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Abstract 
Seasonal effects on mood have been observed throughout much of 
human history.  Seasonal changes in animals and plants are largely 
mediated through the changing photoperiod (i.e., the photophase or 
duration of daylight).  We review that in mammals, daylight specifically 
regulates SCN (suprachiasmatic nucleus) circadian organization and 
its control of melatonin secretion.  The timing of melatonin secretion 
interacts with gene transcription in the pituitary pars tuberalis to 
modulate production of TSH (thyrotropin), hypothalamic T3 
(triiodothyronine), and tuberalin peptides which modulate pituitary 
production of regulatory gonadotropins and other hormones.  
Pituitary hormones largely mediate seasonal physiologic and 
behavioral variations.  As a result of long winter nights or inadequate 
illumination, we propose that delayed morning offset of nocturnal 
melatonin secretion, suppressing pars tuberalis function, could be the 
main cause for winter depression and even cause depressions at 
other times of year.  Irregularities of circadian sleep timing and 
thyroid homeostasis contribute to depression.  Bright light and sleep 
restriction are antidepressant and conversely, sometimes trigger 
mania.  We propose that internal desynchronization or bifurcation of 
SCN circadian rhythms may underlie rapid-cycling manic-depressive 
disorders and perhaps most mania.  Much further research will be 
needed to add substance to these theories.
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Review and theoretical interpretation
In this presentation, we review the seasonality of mood disorders 

and the photoperiodic control of seasonality among mammals, in 

order to present new theories of the causes of depression and mania. 

The seasonal timing of daily light exposures reorganizes cellular cir-

cadian clocks in the bilateral suprachiasmatic nuclei (SCN) of the 

hypothalamus above the optic chiasm to regulate the evening rise and 

duration of melatonin secretion1–4. In mammals, an exquisite mecha-

nism in the pars tuberalis (PT) interprets daylength (photoperiod)  

from the duration of nocturnal melatonin secretion and particularly 

from the early morning termination time of secretion. Melatonin 

offset influences thyrotropin (TSH) and tuberalin hormone syn-

thesis by the PT5,6. These PT products then influence pituitary hor-

mones and induce deiodinase 2 (DIO2), increasing hypothalamic 

triiodothyronine (T3), which maintains seasonal gonadal fertility. 

We propose that this same mechanism may be a key controller of 

mood. Inadequate hypothalamic T3 may cause depression, whereas 

excessive hypothalamic T3 may mediate mania. Peculiar aspects of 

the induction of mania by bright light or sleep restriction suggest 

a theory that mania may be promoted by bifurcation of the circa-

dian phasing of neuronal firing in two distinct populations of SCN 

neurons. Finally, we will propose particular inquiries where more 

research is needed to explore and validate these theories.

Mood and seasonality
To understand mood disorders, we must hope to understand sea-

sonality. Associations of mood changes with the seasons have 

been observed since antiquity7. Likewise, seasonality in suicide 

was recognized by the ancients and has been studied with modern 

scientific methods for over a century8–10. In the short dark days of 

winter, many people, especially bipolars (people who have experi-

enced mania or hypomania)11, experience a tendency towards low 

mood, usually mild. Winter, however, may not be the season for the 

most serious manifestations of depression9. The seasonal peaks for 

suicide and for hospital admissions for depression are in April or 

May in many Northern Hemisphere data sets. Additionally, peaks in 

mania are often observed in May or June, and both depression and 

mania sometimes express secondary peaks in the fall7,11–13.

In small mammals in temperate climates, a quiescent interval or 

even hibernation in winter may be followed by a spring mating sea-

son sometimes highlighted by increased venturesome wandering 

or migrations, increased aggressiveness, rutting behaviors among 

males, and ovulation and mating receptivity among females. Perhaps 

these winter and spring behaviors resemble some aspects of depres-

sion and mania, respectively. According to Wehr et al., seasonality in 

primates is quite variable and seems to be influenced by complexi-

ties of food availability, latitude, and body size: since in tropical and 

equatorial environments, the rainy season may be more influential 

than temperature or day length14. Many human groups have a peak 

in conception close to the spring equinox, sometimes with a second-

ary peak in the fall or at Christmas15,16. Perhaps human populations 

have become variable partly because human groups have moved 

to new latitudes and climates without much time for evolutionary 

adaptation17. Moreover, seasonal reproductive trends have tended to 

flatten as modern lighting and heating became available15. Because of 

the wide range of environmental adaptations and recent migrations, 

human populations may have diversities in seasonal behaviors and 

mood more complex than common mammalian models.

Photoperiodic and molecular control of seasonal 
responses through melatonin
In mammalian species as diverse as hamsters and sheep, seasonal 

behaviors are largely regulated by the photoperiod: the interval of 

daylight within each 24 hours, also called the photophase2,18. Gross 

locomotor activity varies with photoperiod: for example, among 

nocturnal rodents, activity is compressed into the short nights of 

summer, but expands in duration as nights grow longer in winter. 

The photoperiod regulates seasonal responses specifically through 

SCN control of nocturnal pineal melatonin secretion. Melatonin 

generally increases after dusk and terminates by dawn, under con-

trol of the SCN circadian timing system as regulated by day length4. 

It has been shown that in mammals, pineal melatonin secretion is 

under control of a multisynaptic pathway arising primarily from 

the dorsomedial SCN AVP cells. The interval of melatonin secre-

tion is short during the short nights of summer and longer during 

the long nights of winter in most animals, whether nocturnal or 

diurnal. Melatonin has been considered a neuroendocrine signal of 

the night or scotophase (the dark inverse of the photophase). There 

is evidence that nocturnal melatonin secretion feeds back on SCN 

neurons to modulate certain components of the circadian molecular 

clockwork19. The interval of nightly locomotor activity among noc-

turnal rodents and the interval of sleep propensity among diurnal 

adult humans both correspond roughly, but not exactly, to the inter-

val of melatonin secretion by the pineal. A wealth of studies suggest 

that it is the duration of the photoperiod-regulated nocturnal mela-

tonin secretion that controls seasonal increases in gonadal size and 

the adaptive timing of mammalian breeding activities20.

Whether mammals are nocturnal or diurnal in activity, most SCN 

neuronal firing occurs during the day. High-level multiunit firing 

expands in duration in long days. Thus, in diurnal animals, mul-

tiunit activity and waking physical activity tend to occur together, 

whereas among nocturnal animals they are inverse.

A useful hypothesis has been that two coupled circadian oscillators 

interact to regulate nocturnal activity, e.g., in rodents: an evening 

oscillator (E) has been linked to the burst of locomotor activity 

beginning about dusk and a morning oscillator (M) may be pri-

marily responsible for timing the cessation of locomotor activity 

before dawn20. In theory, the E and M oscillators spread apart dur-

ing long nights, allowing an increased span of nocturnal locomotor 

activity in winter, whereas in summer, the long hours of daylight 

and short nights squeeze the interval between E and M, resulting 

in a shorter duration of nocturnal locomotor activity. Likewise, the 

evening increase and morning decline of melatonin secretion seem 

to be influenced by the separate timing of evening and morning 

oscillators, i.e. their phase-timing relationships20. The expansion of 

the nocturnal interval between E and M varies inversely with the 

compression of the diurnal interval of rapid SCN neuronal firing, 

and vice versa. Perhaps nocturnal locomotor activity and melatonin 

secretion are inhibited by daytime SCN neuronal firing.

Recent work in nocturnal rodents has revealed that these E and M 

oscillators are embodied in groups of coupled neurons located in 

the SCN3,21,22. The daylight photoperiodic input, sensed mainly by 

intrinsically blue-light-sensitive retinal ganglion cells23, is transmit-

ted by their axons to a ventrolateral and largely rostral “core” region 

of each SCN, where a key neurotransmitter is vasoactive intestinal 
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polypeptide (VIP)24. The core neurons send VIP axons to surround-

ing dorsomedial “shell” regions (mainly caudal), entraining the shell 

neurons, which then transmit arginine vasopressin (AVP) signals 

to other regions such as the hypothalamic paraventricular nucleus, 

as well as feeding back on the core25. It might seem plausible that 

the core would encompass the evening oscillator and the shell the 

morning oscillator26, yet recent studies suggest a more complex tri-

dimensional distribution of cell groups27. From another perspective, 

the most caudal SCN cells seemingly correspond to the morning 

oscillator28, and some of the rostral cells correspond to the evening 

oscillator21,29, but there is at least one additional cell group in the 

rostral SCN region which may be more closely linked to shell than 

core21,30,31. Under the influence of long photoperiods (short nights), 

the caudal morning oscillator tends to phase advance several hours, 

drawing closer to the rostral evening oscillator32, as the inter-

val of behavioral activity of nocturnal rodents is compressed, but 

inversely, daytime intense SCN neuronal firing expands in duration. 

There seems to be greater spatial and neuropharmacologic com-

plexity than the rostral-caudal or core-shell dichotomies suggest, 

and there is insufficient evidence to firmly link particular SCN neu-

ronal populations to E and M or particular features of motor activ-

ity and melatonin secretion. Also, there may be differences among 

species. Unfortunately, many of the studies of SCN responses to 

photoperiod have been conducted in laboratory-bred mice that do 

not synthesize melatonin (and therefore, lack melatonin feedback 

upon SCN neuronal phases).

During the night, melatonin can be suppressed acutely by light. 

Rather dim light will suppress melatonin among nocturnal rodents, 

and brighter (but still dim) light will likewise shift circadian phases 

in nocturnal rodents33,34. Much brighter light, brighter than most 

contemporary indoor illumination, is usually required to suppress 

melatonin in humans35, and even brighter light resembling sunlight 

or bright cloud cover is required for maximally strong resetting of 

the human clock through circadian phase shifting36. However, there 

are exceptions to the rule that bright light is required for melatonin 

suppression and phase shifting in humans, perhaps related to noc-

turnal dark adaptation of the eyes37–39. Effects of dawn simulation 

during sleep (with closed eyes) may imply that the circadian sys-

tem is especially sensitive to light towards the latter half of noc-

turnal sleep when the greatest retinal dark adaptation might have 

occured37. Moreover, the phase-shifting sensitivity of the hamster 

phase-response curve is modified by long and short photoperiods40, 

and the same might be true in humans.

Melatonin regulation of molecular biology in the pars 
tuberalis region
The duration of nocturnal melatonin secretion regulates seasonal 

gonadal growth and breeding through hypothalamic regulation of 

the most active thyroid hormone, T3 (triiodothyronine); as will be 

discussed, T3 is likewise crucial to mood. The importance of T3 in 

photoperiodic control was recognized in Japanese quail41 and then 

confirmed in mammalian species. In mammals, melatonin binds to 

a dense supply of melatonin receptors in the pars tuberalis (PT) in 

the rostral anterior pituitary just below the hypothalamic median 

eminence42. A primary effect of melatonin in PT is control of the 

transcription factor EYA3 (Figure 1). In the summer when the inter-

val of melatonin secretion ends early, EYA3 is strongly transcribed 

in PT in the early morning about 12 hours after dark, a time when 

circulating melatonin is low43. While TEF binds to a D-Box motif 

on the TSHB promoter in PT, SIX1 binds to an adjacent So1 site on 

the promoter, and EYA3 binds either to SIX1 or to a nearby site on 

the TSHB promoter5,6. Together, EYA3, SIX1, and TEF combine 

to promote pars tuberalis transcription of the TSHB gene. TSHB 

transcription leads to translation of the thyroid stimulating hormone 

beta chain, which hybridizes with the TSHA polypeptide to form 

the active dimer, thyroid stimulating hormone (TSH). PT TSH then 

passes retrograde into the 3rd cerebral ventricle CSF5,6,18,44. Very high 

local concentrations of TSH in the 3rd ventricle bind to TSH recep-

tors on ependymal tanycytes lining the ventricular surface, which 

in turn promotes transcription of a deiodinase (DIO2) that converts 

T4 to T3, especially in the tanycytes. This produces high concentra-

tions of T3 in the third ventricle and adjacent hypothalamic region, 

close to TRH (thyrotropin releasing hormone) cells which homeo-

statically respond to T3 feedback41,43,45. Since T3 passes into the 

brain poorly, most brain T3 is produced within the brain and sub-

stantial portions by these 3rd ventricle tanycytes46. PT production of 

TSH is not influenced by homeostatic feedback from TRH and T3, 

and unique PT glycosylation of TSH prevents the small amounts of 

TSH produced by PT from directly influencing the thyroid47.

T3 promotes the secretion of GnRH into portal blood, leading 

to increased pituitary release of LH and FSH, which augment  

testosterone, estrogens, and progesterone, thus promoting seasonal 

reproduction43,48. Melatonin is thought to suppress prolactin secretion, 

either through direct effects on the PT transmitted to the anterior 

pituitary through PT tuberalin peptides or through actions of CSF 

T3 upon hypothalamic TRH and dopamine secretion49, which 

then influence pituitary prolactin secretion42,50–52. Interestingly, the 

PT tuberalins derived from the gene TAC1 may promote pituitary 

ACTH, GH, TSH, LH and FSH secretion, as well as influencing 

prolactin52.

During the long nights of winter, melatonin may remain elevated 

during those early morning hours when maximal EYA3 transcrip-

tion is scheduled. Because in winter, elevated morning melatonin 

inhibits PT EYA3 and TAC1 transcription, PT TSH production is 

inhibited, thus reducing expression of DIO2, production of T3 by 

tanycytes, and ultimately inhibiting gonadal maintenance in winter. 

Note that in humans, reduced hypothalamic T3 would lead to loss 

of libido, a major component of depression. Conversely, increased 

libido is a typical component of mania.

Although sheep are autumn short-day breeders, much of the melatonin 

control of T3 among rodents and sheep is similar5,6,18,44,53. Almost all 

mammals, both long-day and short-day breeders, produce more prol-

actin in the summer. Humans may be an unexplained exception with 

greater blood prolactin in winter54, but results from different genders 

and populations seem inconsistent. Wehr found that long scotophases 

were associated with longer nocturnal elevations of prolactin among 

both men and women, suggesting that human prolactin may be higher 

when melatonin is higher55,56. One study of afternoon prolactin found 

slightly higher prolactin during winter in premenopausal females, 

but patients with winter depression (either unipolar or bipolar) had 

much lower prolactin than controls in both summer and winter57. Any 

causal role for prolactin in mood swings seems uncertain.
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More studies relating thyroid homeostasis to mood
During the middle of the 20th century, Richter demonstrated that 

lesions of the rat pituitary-thyroid axis produced periodic cycles of 

activity resembling rapid mood cycles. Richter pointed out the rela-

tionship of thyroid impairments to the manic-depressive mood cycles 

that had been described in early clinical studies58,59. Despite this hint, 

generations of psychiatrists studying thyroid effects on mood may 

have been frustrated or misled by the poor correlations between 

peripheral blood indices of thyroid function and mood, which may 

result from poor correlations between the T3 concentrations in the 

blood versus the T3 concentrations in the basal hypothalamus that 

might be the crucial determinant of mood symptoms. There is a vari-

ety of evidence for subclinical hypothyroidism in unipolar and bipo-

lar depression60, and the antidepressant response to sleep deprivation 

is related to the TSH response and to variations in the activity of 

circulating TSH that are attributable to the degree of sialylation61.

Figure 1. Delayed sleep phase (DSP) and photoperiodic disturbances. A, Depicted is some of the circadian gene network that times 
transcription through pathways leading to E-box activation (green) or which deactivates transcription and E-box promoter action (red) in a 
night owl or depressed person. B, The yellow line illustrates normal melatonin secretion commencing shortly before the preferred nocturnal 
sleep time and terminating about the time of awakening near dawn, so that preferred sleep times and sleepiness normally correspond. The 
yellow dotted line illustrates how in DSP, melatonin secretion offset may become delayed, with correspondingly delayed sleep propensity.  
C, The gene EYA3 reaches a sharp peak in pars tuberalis transcription about 12 hours after darkness onset (solid orange line), but if melatonin 
is still elevated (due to long nights of winter, long time in bed, or DSP), the EYA3 peak is largely suppressed (dashed orange line). Bright 
lights (light bulb and sun symbols) conversely suppress and advance melatonin offset (red arrows), disinhibiting EYA3. D, After short nights 
in summer, EYA3, SIX1 and TEF coactivate near a D-box on the TSHB promoter. TSHB hybridizes with TSHA, releasing active TSH into 3rd 
ventricle CSF6,44. E, TSH circulates retrograde to promote DIO2 which converts T4 to T3. F, T3 promotes synthesis and release of gonadotropin 
hormones, implementing summer reproduction and good mood. Revised with permission from Kripke et al., Psychiat. Invest., 201499.
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Nevertheless, much evidence has accumulated that functional brain 

hypothyroidism is associated with depression and with bipolar 

and rapid-cycling manic-depressive symptoms46,59,62–66. Because 

functional brain hypothyroidism may not be indicated by stand-

ard blood thyroid indices reflecting thyroid regulation outside the 

brain, seemingly supraphysiologic oral doses of thyroxine may be 

required to benefit mood67. It may be necessary to add T3 to T4 

supplementation67. Besides mood affects, elevated hypothalamic 

T3 increases appetite, which might help counter the loss of appe-

tite associated with depression68. Moreover, there are now several 

genetic polymorphisms in thyroid-regulation genes reported to 

influence depression and mania, perhaps through influences on 

hypothalamic T3 regulation69. A DIO2 polymorphism is associated 

with the lifetime incidence of major depression70. Two other DIO2 

polymorphisms have been related to poor mental health71. There are 

several other polymorphisms known to influence thyroid metabo-

lism, though their possible role in hypothalamic T3 regulation 

seems inadequately explored72,73. A TEF promoter SNP has been 

reported to be associated with depression74. Also, humans have a 

very common single nucleotide polymorphism labeled rs1321108 

in the So1 binding site of the TSHB promoter, altering it and possibly 

influencing the promoter functions of EYA3 and SIX1. Contemporary 

genome-wide association studies (GWAS) have not confirmed that 

these polymorphisms (SNPs) are associated with major depres-

sion or bipolar disorder. However, in bipolar disorder and sepa-

rately in major depressions, whole genome expression studies have 

observed reduced DIO2 RNA expression in a frontal basal brain 

area (P=0.008), not confirmed by overall meta-analysis; DIO3 was 

increased in the same study and in the same area (P=0.005) in bipo-

lars but not in meta-analysis whereas DIO3 was decreased in major 

depression (P<0.02); the major T3 receptor in the hypothalamus, 

THRA, was reduced in that area (P=2.32E-06) and in an adjacent 

site in major depression and increased among bipolars in two assays 

but not in meta-analysis; TEF is increased in frontal cortex of bipo-

lars by meta-analysis (P<0.05), especially in fronto-basal cortex, 

but not in MDD75,76. In summary, there are now scattered clinical 

and genetic findings indicating that photoperiodic PT control of 

hypothalamic T3 levels might interact with other aspects of thyroid 

regulation to contribute to causal pathways both for bipolar mania 

and for development of depression.

Bright light is known at times to trigger mania77, whereas darkness 

therapy is an effective acute anti-manic treatment78,79. Because morn-

ing bright light immediately suppresses melatonin, early morning 

light should lead to increased EYA3 production, with consequent 

elevations of hypothalamic T3, whereas darkness would lower 

hypothalamic T3. Peripheral hyperthyroidism may produce mental 

disturbances that sometimes resemble mania, so perhaps hypotha-

lamic excess T3 is largely responsible for the manic phenotype62.  

If a bipolar person had a genetic tendency towards circadian phase 

delay, in the Spring as the days grow longer and dusk occurs later 

in the evening, the EYA3 peak might rise later in the day, while an 

early dawn might mask (suppress) melatonin and thus disinhibit the 

EYA3 peak. Hypothalamic TSH and T3 might then become exces-

sively elevated, leading to an April-June peak in mania. Another 

factor is short sleep or a night without sleep, that tends to predict 

mania80,81, and may often involve increased light exposure at night. 

A consistent finding is that airplane passengers travelling from 

west to east (so that they would be exposed to daylight before their 

normal melatonin offset) tend to become manic, whereas travelers 

from east to west (so that darkness might retard melatonin offset) 

are more likely to become depressed82,83. The east-going air travel 

effect is consistent with the antidepressant effect of advancing 

sleep84. Nevertheless, since bright light or air travel do not make 

most people manic at any time of year, a more complicated interac-

tion of factors is likely involved.

Sleep and photoperiodic mechanisms
Sleep restriction (wake therapy) may have dramatic antidepressant 

effects and may sometimes trigger mania85. Indeed, a single night 

of sleep loss often seems to trigger the onset of mania81. The anti-

depressant effect of sleep restriction seems partly (but not entirely) 

mediated by light at night86–88. Whether sleep loss influences PT 

production of TSH apart from light effects on melatonin appears 

to be unknown. We have located no data regarding effects of sleep 

deprivation upon TSH and T3 in the 3rd ventricle CSF. Remaining 

awake past a normal nocturnal bedtime produces a sudden increase 

in blood TSH89. With normal human sleep, blood TSH falls abruptly 

at sleep onset, though the extent to which this is due to darkness or 

to some aspect of sleep itself is uncertain.

A combination of partial sleep restriction (“wake therapy”), phase-

advancing the timing of sleep (and awakening), and morning bright 

light have an enhanced and almost immediate antidepressant action, 

but there are insufficient comparative controlled trials to prove that 

this innovative triple combination is more antidepressant than bright 

light treatment alone84,87. One may speculate that the triple combi-

nation treatment could further limit melatonin inhibition of EYA3 

transcription and therefore lead to more enhanced hypothalamic 

TSH and T3 synthesis. In certain models, morning light exposure 

by itself produces circadian rhythm phase advances accompanied by 

temporary abbreviation of the duration of melatonin secretion20,90,91, 

though this abbreviation was not documented in our own studies 

demonstrating light-induced advances of melatonin92.

Winter depression, other depression, and 
photoperiodic control of mood
The mechanism of winter depression (Seasonal Affective Disorder 

or SAD) can be understood theoretically from the photoperiodic 

mechanisms that we have reviewed. The long nights of winter pro-

long nocturnal melatonin secretion and delay the morning melatonin 

secretion offset, particularly among SAD patients (with possible gen-

der inconsistencies)93,94. Winter depressives tend to have circadian-

phase-delayed melatonin as well as perhaps an expanded duration of 

secretion94,95, either of which can cause delayed melatonin offset. A 

delayed offset of melatonin would inhibit pars tuberalis EYA3 and 

TAC1 production among winter depressives just as in laboratory 

rodents, thus inhibiting hypothalamic T3 production. This theory is 

supported by the distinct antidepressant effectiveness of early morn-

ing bright light which suppresses late night melatonin91,96 as well as by 

the antidepressant effectiveness of morning propranolol and atenolol,  

beta blockers that can also suppress melatonin96–98. This theory is 

likewise supported by the high prevalence of depression among peo-

ple with delayed sleep phase disorder, as explained in Figure 199.

Page 6 of 20

F1000Research 2015, 4:107 Last updated: 28 MAR 2022



It has been shown that depressed people tend to display circadian 

rhythm phase delays at all times of year, most notably in the mela-

tonin offset100–104. A tendency towards eveningness (mild symp-

toms of circadian delay) is associated with lack of remission of 

depression105. For bipolar manic-depressives, eveningness (e.g., 

sleep phase delay) is a characteristic trait partly independent of 

mood state106. Bipolar patients in remission display an actigraphic 

sleep interval that is longer (though with more midsleep awaking 

and poorer sleep efficiency107, perhaps suggesting longer time-in-bed  

rather than increased actual total sleep time), and this predicts 

depression relapse108. Further, when depressed, bipolars are more 

likely to experience long sleep than unipolar depressives109, which 

might indicate a particular tendency of the morning oscillator and 

melatonin offset to delay among bipolars. In one study, bipolars 

had later peaks of nocturnal melatonin than controls, but melatonin 

offsets were not recorded104. Further, there is evidence from small 

samples of patients that bipolars display a long cellular free-running 

circadian cycle in their fibroblasts in tissue culture110,111, presum-

ably of genetic origin. If a similar trend towards a longer cellular 

circadian period were found in SCN cells, it would contribute to a 

delayed melatonin circadian rhythm and delayed offset. Depression 

is most often associated with insomnia, but bipolar depression is 

also commonly associated with long or excessive sleep. Long sleep 

and delayed melatonin offset are associated112. It is possible that 

simply because they spend a longer time in bed, both people with 

insomnia and long sleepers may delay their first substantial morn-

ing light exposures113, thus allowing a delayed melatonin offset to 

mask their EYA3 peak transcription.

A specific genetic contribution to phase delay may arise from 

polymorphisms in CACNA1C, a calcium channel component 

which mediates light-induced shifts of circadian phase114, perhaps 

through effects on both GSK3B and also on CREB (CREB medi-

ates light stimulation of the SCN)115. CACNA1C is one of the loci 

most strongly associated with bipolar disorder in GWAS studies 

(as well as less strongly associated with schizophrenia and major 

depressive disorder)116. A polymorphism in ASMT, the last gene in 

the melatonin synthesis pathway, is associated with circadian phase 

delay and perhaps with inadequate melatonin synthesis (factors that 

combined might augment or inhibit EYA3), and with depression 

and bipolar disorder117,118. In addition, there have been quite a few 

reports of genetic variants associated with affective disorders in 

genes participating in circadian oscillator regulation, but we feel 

there has as not been adequate replication of these findings, includ-

ing our own99,119–124.

There is evidence that depressed people experience below-average  

daytime illumination overall compared to the population as a 

whole125,126. Depression may result at least in part from light defi-

ciency, especially morning light deficiency, whether from the winter 

season, circadian phase delays, long sleep, or various social, behav-

ioral, or occupational factors. Moreover, depressive symptoms are 

treated successfully by morning bright light treatment as well as by 

manipulations of sleep and circadian phase at any time of year84,127. 

Data from a population survey suggested that adults who were more 

depressed spent longer times in bed, possibly because they experi-

enced more light at night113. Even though light at night when found 

in ordinary households is associated with depression, the reported 

light intensities do not seem bright enough to substantially reduce 

total nocturnal melatonin production113,128,129.

Some theoretical difficulties should be acknowledged. There is evi-

dence that a minority of patients with winter depression may have 

advanced melatonin in reference to their sleep times130, at least as 

measured by the dim-light melatonin onset. There might be phase-

advance as well as phase-delay variants of nonseasonal depres-

sion and bipolar illness as well131 that possibly might result if the 

EYA3 peak becomes more phase-advanced than does melatonin 

offset. Seasonal summer depression is more difficult to explain, 

but might arise from people staying indoors in hot weather, thus 

prolonging nocturnal melatonin secretion, although direct hypotha-

lamic suppression of thyroid function by summer heat might also be 

involved.

Complexities in control of mood
Given our proposed theory of winter depression, it is difficult to 

explain Spring seasonal peaks in hospitalizations for depression, 

suicide, and mania e.g., April and May in the northern hemisphere. 

Some authorities have hypothesized that these Spring peaks are due 

to prolongation or exacerbation of depressions that begin as winter 

depression, or rebounds therefrom, but there are few specific data 

to support this view. A genetic trend towards phase delay in mela-

tonin offset may explain how depressions due to inadequate pars 

tuberalis EYA3 and low hypothalamic T3 might occur at any time 

of year, but a genetic predisposition to delay does not explain why 

symptoms should peak near or just after the Spring equinox. We 

may speculate that a genetic tendency to delay could exacerbate 

effects of the spring transition to longer days. Spring lengthening of 

days results in a delay shift of the evening oscillator caused by later 

sunsets, which we combine with the “Daylight Savings” advance in 

the time standard that influences time in bed. The combined effect 

makes sunset suddenly much later by our adopted time standard. As 

days grow longer in Spring, a balancing advance shift of the morn-

ing oscillator might be anticipated due to earlier dawns, but mela-

tonin offset was not found earlier in summer among normal urban 

subjects, perhaps partly because of the shift in time standard132. 

In contrast, melatonin offset was found to be earlier in summer than 

winter among winter depressives, with some differences between 

men and women132. An endogenous tendency to delay among 

depressives could make advance of the morning oscillator in Spring 

especially indolent, especially if combined with a relative unrespon-

siveness of the morning oscillator to phase-advancing light expo-

sures. Numerous studies indicate some asymmetry of responses 

to light stimuli causing swifter light-stimulated delay phase shifts 

versus advances as photoperiods vary90,114,133. We may speculate that 

perhaps the spring transition to a shorter scotophase combined with 

the Daylight-Savings time reference could produce a delay in mela-

tonin offset despite an earlier EYA3 peak, accentuating the morning 

melatonin masking of EYA3 with consequent depression. On the 

other hand, in a rat model, light-induced phase advance may tem-

porarily suppress pineal n-acetyltransferase (NAT), thus suppress-

ing melatonin production90. These competing processes promoting 

possible increased or decreased melatonin masking of EYA3 in the 

Spring might produce the paradoxical peaks of both depression and 

mania at about the same season, depending on various factors influ-

encing susceptibility in a diverse population. Whether Spring tends 

to promote depression or mania may depend on the extent to which 

the later sunset delays melatonin offset more than the EYA3 peak, 

despite an earlier dawn. An unexplained mystery is how the peak 

of EYA3—seemingly about 12 hours after dark--is controlled and 

synchronized.

Page 7 of 20

F1000Research 2015, 4:107 Last updated: 28 MAR 2022



Rapid cycling and circadian oscillator desynchronization
A feature of some bipolar syndromes that is particularly hard to 

understand is the appearance of rapid cycling, that is, episodes of 

depression and/or mania which come and go at least four times a 

year. In extreme cases, mania and depression may alternate every 

few days or even every other day81,134. Halberg hypothesized that 

such mood swings could be caused by a free-running desynchro-

nized circadian rhythm with a cycle longer than 24 hours, so that its 

peak drifted later each day relative to the 24-hour light-dark cycle135. 

One might consider this an “external desynchronization” model, 

that is, where all of the body’s internal rhythms might remain syn-

chronized to each other, but they might free-run progressively later 

and later, beating in and out of phase with the external environment, 

particularly, its light-dark cycle. Both Kripke, Wehr and their col-

leagues tried to document such non-24-hour rhythms among rapid-

cycling patients, but apart from a very few intriguing examples that 

did not seem fully persuasive, they had little success78,131,136,137.

On the other hand, Wehr reported clear demonstrations that repeated 

48-hour sleep wake cycles are at times observed among bipo-

lar patients, in association with 48-hour cyclic manic-depressive 

symptoms81. Wehr attributed these 48-hour cycles to an “internal 

desynchronization” model wherein the temperature rhythm and 

many other circadian rhythms remained synchronized to the 24-hr 

environment, but the period of sleep-wake (and some associated 

rhythms) decelerated so much as to double cycle length and pro-

duce 48-hour rhythms. Overt symptoms depended on when critical 

intervals of these two sets of rhythms were in or out of phase. In 

temporal isolation and cave experiments, circadian rhythms of core 

temperature and related functions have at times been observed to 

free-run with cycle periods of about 25.0 hr., while the sleep-wake 

rhythm might internally desynchronize to cycles as long as 36 hr. 

or even 48–50 hr138,139. Because in these internal desynchroniza-

tion models, sleep-wake cycles tend to be much more unstable and 

generally slower, debate has emerged about whether sleep-wake 

should be considered a “weak” non-linear circadian oscillator or 

alternatively a homeostatic relaxation oscillator that should not be 

classified as circadian. In any case, the internal desynchronization 

observed in isolation studies has not generally been recognized to 

cause mood disturbances in cave and isolation experiments, despite 

a few severe psychoses reported in such experiments. The absence 

of daylight and the dark surrounding of cave environments might 

have been a protective antimanic factor. The isolation and cave 

studies did prove that cycles of alternating long and short sleep or 

even 48-hr sleep-wake cycles could arise as a consequence of circa-

dian internal desynchronization140.

In rats, overall SCN firing is higher in the day (when the animals 

mainly sleep) than at night, and the duration of multiunit neuro-

nal firing is longer in long photoperiods. However, within either 

the photophase or scotophase, firing is somewhat higher in wake 

and in REM than in SWS141. SCN metabolic activity is likewise 

higher in the day and further increased by light exposure142. In rats, 

when core and shell were internally desynchronized by 22-hour 

light-dark cycles, both the SCN core and shell remained associated 

with slow-wave sleep, but REM sleep and body temperature were 

more exclusively associated with activity of the shell neurons143. 

It would appear from the responses to phase-shifting light-dark 

cycles, considering the two-process model of sleep-wake control, 

that the more-directly-light-responsive core is associated better 

with the homeostatic aspect of sleep-wake regulation, whereas the 

shell is better associated with the circadian modulation of sleep 

wake. In diurnal mammals, also, SCN firing tends to be higher 

during the day times when these animals tend to be awake, but 

whether firing of SCN core or shell augments or suppresses sleep 

among diurnal animals is unknown to us, and therefore, it would be 

uncertain how to relate the SCN core and shell division to internal 

desynchronization in humans.

Circadian oscillator bifurcation
Perhaps we may gain further insight into mechanisms that could 

trigger mania by considering circadian rhythm bifurcation, which 

is the division of the circadian rhythm into two components, with 

the two peaks being separately entrainable. Circadian research has 

developed certain laboratory models that “bifurcate” nocturnal 

rodent activity into two circadian components (bouts of activity) 

about 12 hours apart from each other. These two activity bouts can 

be entrained in a stable manner by a special light-dark cycle con-

sisting of two photophases (light intervals) and two scotophases 

(dark phases) within each 24 hours (for example, light-dark-light-

dark hours abbreviated as LDLD7:5:7:5)144. A large set of stud-

ies utilizing Syrian hamsters, Siberian hamsters, and mice have 

demonstrated stable entrainment of bifurcated scotophase activ-

ity bouts, body temperature peaks, and melatonin peaks145. Taken 

together, these studies lead to the hypothesis that LDLD entrain-

ment bifurcates the neural oscillators in the SCN into two or more 

components, each driving activity, body temperature, and melatonin 

secretion. Bifurcated-rhythm hamsters develop and maintain sum-

mer gonadal size and presumed reproductive fertility146, perhaps 

because the duration of each bout of melatonin secretion is brief (as 

in the short nights of summer). The bifurcated activity components 

and bifurcated melatonin secretion in the scotophases represent the 

control of two independently-entrainable circadian pacemakers 

which are yet mutually coupled, and which will fuse into a single 

component if the bifurcated photophase is withdrawn71,147. In this 

model, the circadian bifurcation seems to result from two differ-

ent populations of neurons in the SCN that assume almost oppo-

site phases, though the two bifurcated SCN populations appear to 

be bilaterally symmetrical148,149. It should be emphasized that the 

two scotophases and two photophases per 24 hr day do not need 

to be absolutely symmetrical, especially once the bifurcation has 

occurred. When the bifurcated photoperiod is replaced by constant 

dark and the bifurcated activity bouts rejoin each other, the mela-

tonin secretion components presumably also fuse. The two activity 

bouts can be recoupled either by the day-scotophase activity com-

ponent delaying or by the day component advancing in reference to 

the night-scotophase activity component (Figure 2)71.

Conceivably, LDLD bifurcation into two circadian oscillator com-

ponents produces two peaks in EYA3 transcription, neither of which 

is well-suppressed by melatonin, thus promoting increased PT TSH 

production and increased tanycyte production of T3.

The attainment of bifurcated circadian activity cycles by LDLD 

lighting cycles and the phase-shifting effects of light in general can 

be enhanced in nocturnal rodents by very dim illumination during 
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the dark scotophases, for example, 0.005 lux147. This would be less 

than 1% of bright moonlight and too dim to suppress melatonin. 

Since a dim-light scotophase causes the duration of the rodent noc-

turnal activity phase (alpha) to expand, it has been inferred that dim 

light weakens the coupling between separate circadian neuronal 

populations71,147,150,151. Coupling refers to the mutual influence of 

one oscillator on another. Conceivably, even dim light might sup-

press LHX1, a transcription factor (known to be suppressed by 

bright light) that mediates expression of VIP and the AVP receptor 

AVPR1A, thus impairing coupling of SCN neurons152.

In humans, Worthman and Melby have found that in the tropical 

and subtropical environments in which, for the most part, our spe-

cies developed, daytime napping is quite pervasive, especially near 

the middle of the day153. One wonders if the bifurcated activity 

patterns which are observed in hot climates in equatorial regions, 

where the heat of the day leads to mid-day sun avoidance, might 

also mimic a bifurcated LDLD laboratory photophase and the result-

ant bifurcated circadian organization. However, the common human 

daytime sleep episodes usually described do not constitute half of 

24-hour sleep. In primitive surroundings, illumination intensities 

are substantial during daytime sleep, unlike the dim scotophase in 

the rodent circadian bifurcation model. When people in equatorial 

climates or in summer at high latitudes remain awake in the cooler 

night, often using artificial light, or among night shift workers, a 

somewhat-bifurcated bright-light photophase might be combined 

with dim light exposure during the scotophases.

We do not know much about human circadian responses to bifur-

cated sleep conditions such as those suggested by napping. We are 

unfamiliar with any evidence that bifurcated melatonin secretion 

may be produced or that the two sleep episodes come to represent 

two independently-entrainable circadian oscillators. Unfortunately, 

we have virtually no information concerning what levels of light at 

night might produce phenomena in humans similar to the dim night 

light effects promoting circadian bifurcation in hamsters and mice, 

if indeed this scotophase effect occurs in humans at all, and we have 

no definite data concerning what conditions might produce true 

bifurcated circadian oscillators among humans. Our own pilot stud-

ies attempting to induce bifurcated melatonin rhythms with LDLD 

cycles produced only a few bimodal melatonin peaks of unequal 

amplitude, and we are unsure if longer exposure to LDLD or addi-

tion of dim light to the dark scotophases might have led to more 

convincing bifurcation. Although it has been asserted that irregular 

sleep cycles may induce bipolar relapses and mania154, there is no 

evidence that specific conditions producing bifurcated sleep pat-

terns in humans predispose to depression or mania. Moreover, it 

is likely that interactions of genetic variations with environmental 

factors are required to trigger major mood disorders.

Phase jumping caused by light and singularity
Related to circadian rhythm bifurcation, another peculiar phenom-

enon called “phase jumping” should be considered. When bright 

light compresses the effective primary scotophase excessively (e.g., 

to around 4 hours in some nocturnal rodents, LD20:4), and an alter-

native secondary scotophase is made available, the originally noc-

turnal activity bout may “jump” to a relative antiphase orientation 

in the newly opened scotophase147. This phase jumping is likewise 

augmented by dim light during the scotophase, and might result 

Figure 2. Theoretical schematic of circadian bifurcation in 
humans. In this diagram, each line of the ordinate represents a 24-hour 
day and the abscissa represents the 24 hours within that day. The 
grey shading depicts very dim light or darkness, whereas the white 
background represents daylight and artificial light. The light-dark 
cycle is modelled as commencing with LD16:8 and transitioning in 
the middle days to LDLD8:4:8:4, with return to LD16:8 in the final 
days. The orange shading represents SCN multiunit neuronal firing 
that gradually splits apart and bifurcates into two antiphase patterns 
of firing during LDLD8:4:8:4, representing two distinct populations 
of coupled SCN neurons. During LD16:8, firing might be spread 
out over a longer interval in the light than is shown, but there may 
be insufficient data to model the pattern of neuronal timing more 
exactly. After return to LD16:8 or to continuous darkness (DD), the 
two components of neuronal firing gradually fuse together again. 
The blue regions represent melatonin secretion during the dark 
intervals. Suppressed by neuronal firing and light suppression, it 
is plausible that melatonin secretion would be partly or completely 
inhibited during the transitions from LD16:8 to LDLD8:4:8:4 and back 
again, during which melatonin secretion would bifurcate and then 
fuse again. These patterns are theoretical, because the transitions 
of neuronal firing and melatonin secretion from an LD pattern to a 
bifurcating LDLD pattern and back again have never been observed 
simultaneously in detail, certainly not in a diurnal mammal.
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partly from light-suppression of LHX1, VIP, and AVPR1A. Possi-

bly during the very long summer days that occur at higher latitudes 

and with certain patterns of artificial light, phase jumping might 

be triggered. Similarly, it is conceivable that severe sleep restric-

tion (e.g., no more than 4 or 5 hours in bed) would trigger human 

phase jumping if coupled with other permissive conditions (e.g., a 

daytime retreat with darkness or very dim lighting).

Using mice bred with a PER1 or PER2-bound luciferase, SCN 

slices can be monitored in vitro over time. Luciferase lumines-

cence is then a marker of the molecular circadian clock phase of 

individual SCN neurons. In slices from mice housed in the dark or 

in LD12:12 (that is a photoperiod of 12 hours light and 12 hours 

dark), the peak times of PER2-luciferase activity do not differ more 

than a few hours in various SCN regions, nor is the neuronal tim-

ing determined simply by core-shell VIP-AVP or rostral-caudal 

parameters21,27. As the duration of the photophase is incrementally 

increased, the phase distribution of SCN neurons broadens substan-

tially, until in LD20:4, a population of mostly-core neurons and a 

population of mostly-shell neurons are 6–12 hr out-of-phase with 

each other21,155, somewhat resembling rodent LDLD bifurcation 

experiments. Released into DD (continuous darkness), the mutual 

coupling of these two neuronal pacemaker populations pulls them 

back into alignment, either through relative advances or delays of 

the core-like population in reference to the shell-like population. 

After exposure to such atypical photoperiods, the coupling of the 

two groups of pacemaker neurons might undergo a full 360° circa-

dian phase rotation in reference to each other155. Thus, over many 

days, one pacemaker component might steadily delay (or advance) 

relative to another, reminiscent of the non-24-hour components and 

internal desynchronization previously hypothesized to trigger rapid 

mood cycling in humans.

Another phenomenon which might possibly be involved in mania 

is a complex of light pulses that may drive a circadian system to 

its singularity point, apparently stopping the clock156. It is possible 

that an anti-phase orientation of the core and shell could at times 

produce an appearance of SCN singularity while both core and 

shell remain inversely oscillatory157. Stopping or severely attenuat-

ing SCN rhythmicity could have profound consequences for brain 

function, e.g., memory158. Bright constant light may also suppress 

circadian activity rhythms in rodents159. Human circadian rhythms 

are occasionally driven through an apparent singularity by phase-

shifting stimuli160, but in the presence of a synchronizing environ-

ment, the circadian rhythms appear to recover after a few days. It 

is conceivable that an interval of singularity in at least one portion 

of the SCN, e.g., the core, is an element in sudden switches into 

mania.

Core and shell circadian bifurcation, melatonin 
bifurcation, and mania
To recapitulate, both a bifurcated photophase, e.g., LD7:5:7:5 or a 

very long photophase, e.g., LD20:4 can evidently phase shift two 

SCN neuronal populations towards a near-antiphase SCN pace-

maker organization from which a 360° phase rotation between 

the two pacemakers might evolve. In rodents, dim light during the 

scotophases enhances this bifurcation. The anti-phase orientation 

of two SCN neuronal populations could result in internal circa-

dian desynchronization somewhat resembling the observations 

in temporal isolation, cave experiments and LD phase shifts, but 

appearing much less overt than the full external circadian desyn-

chronization hypothesized by Halberg for rapid mood cycles of 

several days135. Indeed, we do not know exactly how internal cir-

cadian desynchronization or resynchronization (reorganized phase 

relationships among SCN components) might best be documented 

among humans. The best clue comes from experiments in which 

a bifurcated LDLD cycle produced bifurcated locomotor activity 

in Siberian hamsters that was associated with two temporally dis-

sociated episodes per day of melatonin production, one melatonin 

secretion interval seemingly coupled to the SCN core oscillator and 

the other to the shell28,145. Note, behavioral and reproductive data 

from related studies indicated that these short intervals of melatonin 

production would be associated with gonadal fertility146, permitting 

an inference that hypothalamic TSH and T3 were produced at long-

day concentrations or greater.

Collecting blood, saliva, or urine samples for melatonin every few 

hours from severe manics has been so challenging that until recently 

we could locate no substantial body of round-the-clock observa-

tions of melatonin from manics which might reveal if a bifurcated 

rhythm or a shifted phase relationship among distinct SCN oscilla-

tor components are likely to be associated with mania. Remarkably, 

an outstanding group of investigators has now overcome the chal-

lenges of collecting 24-hour saliva samples from manics for assay-

ing melatonin. Their exciting new evidence shows that during acute 

mania, bipolars indeed produce two antiphase separated peaks of 

melatonin secretion, one at night and one in the day, much like the 

melatonin secretion of bifurcated Siberian hamsters145,161. The inves-

tigators suggested that the bifurcated peaks in melatonin secretion 

might be due to disruption of coupling between SCN oscillators. 

There had been previous observations of two largely-merged peaks 

of melatonin as well as possibly some rare unmerged double-peaks 

even among normal subjects162, or a possible small daytime peak 

among occasional winter depression patients96, but we do not know 

of situations apart from mania in which fully-separated and rela-

tively equal and symmetrical antiphase melatonin peaks have been 

observed in humans. We can speculate that bifurcated melatonin 

excretion could prove a valuable marker of a bifurcated antiphase 

orientation of human SCN neuronal populations, and perhaps this 

antiphase SCN organization is the specific circadian disorder of 

mania.

Since in normal humans, waking activity is highest in the day, but 

melatonin is highest at night encompassing the hours of sleep, we 

might expect that among manics with bifurcated melatonin secre-

tion, bifurcated locomotor activity or bifurcated sleep-wake patterns 

might also be observed. The trail-blazing study of human melatonin 

in manics displaying two peaks as described above did not record 

sleep-wake or activity161, but some informative wrist activity plots 

in mania were published by Wehr’s group81,163. In the plots from 

Wehr’s observations, we could not discern any persuasively bifur-

cated activity rhythms—on the other hand, brief daytime cessations 

of activity in these plots prevent us from being certain that a bifur-

cated activity rhythm did not occur among the manics recorded.
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Another finding related to this theory of bifurcated SCN pacemaker 

components in mania comes from the following clinical observa-

tions. Rapid-cycling bipolars seem less likely to suffer relapse if 

bright light treatment is given near midday164, a time when bright 

light might tend to reverse a bifurcation between SCN pacemaker 

components.

We have an interesting model of potential circadian sleep bifurcation 

among human shift workers. On the one hand, it has been asserted 

that circadian behavioral irregularities such as those produced by 

shift work schedules promote mania154. On the other hand, mania is 

not generally noted among shift workers, although it is often con-

venient for night shift workers to divide their sleep between several 

hours in the morning just after the night shift and an additional 1–3 

hours in late afternoon or evening before going to work. So far as we 

know, bifurcated melatonin rhythms have not been described among 

such night shift workers, perhaps because many shift their mela-

tonin rhythms little from their day-work pattern. Also, the dim light-

ing during most night shifts might be protective. To the extent that 

attempts to use bright light to promote alertness during night shift 

work are effective in shifting melatonin secretion rhythms, such 

lighting might increase the risks of triggering mania or depression. 

Evidence for possible bifurcation in sleep-wake has been reported 

from certain circadian isolation studies, but there was no evidence 

for mania in these studies, in which melatonin was not assessed165.

Complex light stimuli: possibilities triggering 
circadian bifurcation and mania
Now we may synthesize hypotheses of how mania could result 

from a disorder of photoperiodic regulation. From the poor sleep 

and often early awakening of manics, it appears that some aspect of 

circadian regulation becomes disordered during mania. The trigger-

ing of mania by a single night’s sleep loss or midsleep awakening 

or perhaps more chronic sleep compression or phase shifts81,83,166 

raises the question of whether a sudden internal phase shift between 

two SCN component oscillators may produce a switch into mania. 

If a melatonin-related SCN oscillator component became delayed 

well past dawn, perhaps because of sleep loss and use of artificial 

lighting late at night, then morning light might further delay that 

component past noon, triggering internal circadian desynchroni-

zation or bifurcation. Dim light at night might facilitate the sud-

den phase shift, since a person suffering severe sleep disturbance 

for any reason is likely to turn on artificial lighting irregularly at 

night, and this may weaken coupling of SCN component circadian 

oscillators. We currently have no evidence base from which to judge 

what intensities and timings of light might be most likely to produce 

internal desynchronization or altered phase of circadian oscilla-

tor components in humans, but it does appear that bright morn-

ing light perceived at or before the usual time of awakening might  

contribute77,91. Likewise, since sleep restriction in the second half 

of the night seems almost as effective as whole-night sleep depriva-

tion in its antidepressant effects167, it seems likely that sleep in this 

second half of the night is most critical to preventing mania. The 

often-discussed shortened sleep and elevated mood experienced by 

Scandinavians near the summer solstice might be a modest human 

replica of the LD20:4 response, or the impressive peak in violent 

suicides in Greenland at about the same season might be an even 

more dramatic model10,168. At present, we have only one strong 

study showing that the circadian system is actually bifurcated dur-

ing mania (as indicated by melatonin). The difficulties of collecting 

such data must be acknowledged, but perhaps we know better now 

what measurements are needed.

A seeming paradox arises from our hypothesis that mania may arise 

from excessive phase delays of an oscillator component within the 

SCN, in part due to genetic tendencies to delay, since mania is 

more often described as a condition of early awakening and phase 

advance161. Perhaps the explanation is that should bright daytime 

light cause an SCN component to delay more than 180°, it becomes 

advanced from the perspective of the other component. The mutual 

coupling of SCN oscillator components might be expected to 

resolve any transient internal desynchronization within a few 

days, but perhaps bright light exposures both soon after awakening 

and again past mid-wake would stabilize persistent mania, just as 

LDLD lighting can prevent bifurcated circadian oscillations from 

resolving among hamsters. Likewise, it becomes logical that either 

bright light at some critical time of day or round-the-clock dark-

ness would tend to resolve antiphase malsynchronization of the two 

SCN oscillator components. The empirical observations that mania 

may resolve when a patient is treated with the delaying drug lithium 

or with a dark environment79 may be consistent with these specula-

tions. Perhaps the process of resolution of mania can be monitored 

by studying the evolution of the two peaks of melatonin in mania.

Conclusion and needs for future research
To conclude, we have proposed that photoperiodic mechanisms, 

interacting with inadequate or untimely illumination and a genetic 

tendency for phase delay, produce depression. Among bipolars, 

we propose that combined with genetic susceptibilities, abnormal 

bright light illumination patterns trigger mania by producing inter-

nal desynchronization and perhaps bifurcation of SCN circadian 

oscillator components, thus leading to photoperiodic malregula-

tion and excess hypothalamic T3 production. Data supporting a 

photoperiodic mechanism triggering depression are already quite 

strong: both evidence for delayed melatonin offsets and delayed 

awakenings among depressed patients and evidence that forcing the 

melatonin offset earlier (with bright light treatment or propranolol) 

is antidepressant. Data supporting circadian bifurcation as the cause 

of mania do not extend beyond the seminal observation of a bifur-

cated melatonin excretion pattern in one study of manics161 and 

some support among other scattered and uncertain clinical obser-

vations. The hypotheses presented have many limitations includ-

ing missing elements of the proposed neurobiologic mechanisms, 

an insufficient evidence base, some apparent inconsistencies with 

available data, and insufficient testing of predictions. These hypoth-

eses are presented as a call for much further study and testing of 

predicted effects, both among laboratory animals and among con-

senting human volunteers.

Here are some key areas for future research:

• Further observations of bifurcated 24-hour melatonin secretion 

among manics are needed, extended by descriptive longitudinal 

data during the development and remission of mania. Likewise, 

data on sleep-wake, activity, and core temperature are needed to 

correlate with melatonin changes during the evolution of mania.
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• Blood measurement of PT TSH47 in humans could con-

firm impaired secretion of PT TSH in depression, a positive 

response to light, and excessive PT TSH in mania.

• Long-term longitudinal descriptive monitoring of bipolar 

patients (becoming increasingly practical with the growing 

mass-market for health-monitoring actigraphic wrist bands) 

should be initiated to try to identify what lighting patterns trig-

ger depression and mania, and how the consequent activity 

patterns evolve. Considering the ethical obligation to “do no 

harm,” we do not recommend attempts to trigger depression 

or mania experimentally, but in the long run, observational 

research may lead to testable preventive interventions.

• More clinical trials are needed to optimize bright light treat-

ment timing, sleep-wake phase-advance, and sleep restriction 

combinations in relieving depression. Likewise, more clinical 

trials are needed to clarify what manipulations of light or dark-

ness or melatonin agonists might cause mania to remit.

• Systematic dose-response studies should define what levels 

(and color-spectrum) of dim light might facilitate loosening of 

SCN component oscillator coupling in humans, with possible 

resultant increased melatonin secretion durations, facilitated 

phase-shifting, and perhaps facilitated circadian bifurcation of 

sleep and locomotor activity behaviors in humans.

• Systematic experiments should search for photoperiod manipu-

lations which can produce circadian bifurcation in humans, and 

measure the related endocrine and mood responses.

• Shift workers with bifurcated sleep patterns should be 

re-examined to see if bifurcated melatonin secretion results, 

and if this correlates with mood disorders. Studies of various 

transmeridional air travel effects may also clarify the roles of 

varying light exposure patterns.

• Systematic experiments should examine if very long photo-

periods, e.g., 20:4, when coupled with an inserted phase of 

darkness or dim illumination, can produce phase-jumping in 

humans, with consequences in activity, sleep wake, melatonin 

secretion, and mood. Both among humans and laboratory ani-

mals, data are needed as to whether phase jumping produces 

bifurcated melatonin secretion patterns.

• We would like to see testing of the hypothesis that the cir-

cadian bifurcation produced by LDLD skeleton photoperiods 

produces bifurcated large EYA3 peaks in PT and consequent 

increased third ventricle TSH and T3. Perhaps this could be 

tested in a diurnal mammal, possibly using microdialysis of 

TSH or T3 in the third ventricle CSF near PT. Possibly in-vivo 

MR spectral imaging could be an alternative to microdialysis.

• Blood measurement of PT TSH47 could be useful to assess 

effects of circadian bifurcation in rodents.

• We would like to understand the molecular mechanism con-

trolling the timing of the morning peak in PT EYA3, absent 

melatonin inhibition.

• We would like clarification of how PT regulation of hypotha-

lamic T3, which does impact TRH secretion, interacts with the 

peripheral homeostatic regulation of thyroid metabolism.

• We would like to see further study of the SCN neurophysiol-

ogy related to LDLD-induced circadian bifurcation, including 

clarification of core-shell and anterior-posterior SCN func-

tional differentiation, clarification of the SCN neuroanatomical 

structures, and exploration of which SCN-efferent neurotrans-

mitters such as AVP and VIP mediate bifurcated secretion of 

melatonin when it occurs. Likewise, clarification of the con-

trasts and overlap between the evening-morning oscillator 

models and core-shell oscillator models is needed.

• Similarly, we would like to see clarification of the neuronal 

firing patterns in the core and shell regions of the SCN after 

LDLD bifurcation as they relate to the component circadian 

oscillators in both nocturnal and diurnal rodents.

• We would like more data on the effects of LDLD circadian 

bifurcation in rodents on reproductive endocrine functions.

• We would like to see how LDLD-induced circadian bifurcation 

influences rodent behavioral models of depression and mania.
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This is a thoughtful and timely review of an important topic in mood disorders i.e. the circadian 
regulation of mood and its relevance to the understanding and treatment of major mood 
disorders. Despite significant efforts over many decades, and incremental improvements in the 
treatment of depression and bipolar disorder, many patients do not respond to standard 
treatments. At a clinical level it is apparent that the vast majority of patients with major mood 
disorders have a significant disruption in one or more aspects of circadian regulation whether it 
be sleep, activity rhythms, social behavior, energy regulation, hormonal function etc. The current 
paper adds significantly to the literature in both proposing new ways of thinking about circadian 
dysregulation and mood and proposing a series of studies that follow from the models proposed. 
The proposed studies also exemplify well the new Research Domain Criterion strategy to 
understanding complex pathology. 
 
Overall, the paper has a strong emphasis on basic mechanisms, often at a molecular level, which 
can be difficult to follow at times. It might be of interest for the authors to balance this approach 
with a consideration of the possible evolutionary/adaptive significance of the mechanisms under 
consideration as this might provide further context for their arguments. For example, what might 
be the advantage to a particular species of having the ability to bifurcate circadian rhythms? Or do 
the authors propose that this bifurcation only occurs in pathological situations or when the system 
is stressed beyond its normal physiological control? 
 
In terms of specific mechanisms, while the current paper emphasizes melatonin studies at many 
points, it can be argued that the neurotransmitter dopamine is as important to daytime activity 
rhythms and arousal as melatonin is to sleep rhythms and physiology at night. Accumulating 
evidence suggests that there are several ways by which melatonin and dopamine interact and 
modulate one another, including basic circadian rhythmicity (reviewed by Zisapel, 2001). 
Furthermore, there is a large body of work demonstrating dopaminergic dysfunction in mood 
disorders and bipolar disorder in particular. It may be that the best way forward for future work 
on circadian physiology and mood is to consider these two systems as one integrated system and 
to understand their interplay in the regulation of mood. How this might relate to the proposed 
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hypotheses and research program might be of great interest going forward.
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Klaus Martiny  
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This comprehensive review of seasonality, mood, circadian regulation, and their inter-relatedness 
is of great value for the creation of new hypotheses in the field and gives impetus for a number of 
new studies. The title is appropriate even though the paper touches on a number of additional 
subjects such as separate morningness and eveningness oscillators and the regulation of thyroid 
function in relation to mood. The abstract covers the content of the paper. Many theories are 
presented and perhaps the red thread is sometimes a little difficult to follow in the narrative. Of 
the many ideas presented the hypothesis regarding separate oscillators for morningness and 
eveningness is of immediate interest. It should be investigated how this phenomenon is reflected 
in the rating scales used to assess chronotype and time-dependent preferences. Do we need 
separate scales for morningness and eveningness? In the quest for understanding the higher 
prevalence of suicide in springtime authors do not include the widely accepted psychological 
concept that for a person with persistent depression, the contrast of seeing other persons elation 
and increased energy in springtime, could contribute to the phenomenon. This raises a more 
general point: why is the interaction or cascading effect between cognition (thought and emotion) 
and circadian physiology not included in our understanding of the regulation of mood? A few 
critical points: Authors uses the word sleep restriction for sleep deprivation (wake therapy). Sleep 
restriction in the sense of a continuous reduction in sleep time does not induce an antidepressant 
effect. The effect of sleep deprivation depends on sleep abstinence for a substantial part or the 
whole of a single night AND the timing of recovery sleep days. Also the effect of sleep deprivation 
probably relates to the relation between sleep and the activity of the raphe nuclei on the brain-
stem and this should be mentioned. Figure 1 is rather busy and could be simplified to enhance 
readability. On page 5 the effect of darkness as an antimanic treatment is defined as “effective”. At 
this point we should probably regard the evidence of dark therapy, however interesting, as 
preliminary (and difficult to carry out). The statement, also on page 5, that the effect of sleep 
deprivation is partly caused by light, is not quite substantiated by the one reference dealing with 
this issue. Finally, references should be checked for content in relation to their relation to issues 
discussed in the paper with a more critical attention to the quality of the studies (case reports and 
pilot studies).
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We appreciate Dr. Martiny's thoughtful review as well as his important contributions to light 
treatment of depression. Some of the interesting issues he raises deserve further 
discussion. 
  
As Dr. Martiny points out, the concept of chronotype and the usual methods of measuring 
chronotype do not recognize the partially-independent phases of morning-oscillator and 
evening-oscillator components. However, the relative timing of evening and morning 
components seems crucial to the photoperiodic responses in animals and apparently in 
humans. Although our presentation emphasizes the melatonin offset, the dim light 
melatonin onset or DLMO has become popular as a more-easily-measured phase marker. It 
is likely that the DLMO is correlated with the timing of the EYA3 peak in pars tuberalis. As 
demonstrated in much animal work and to some extent at 
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1988787/  Figure 6, melatonin onsets and 
offsets may have slightly different phase-response curves. Factor analysis of morningness-
eveningness scales has likewise suggested the presence of partly independent morning-
related and evening-related factors, so we agree that there could indeed be value in 
generating separate morning and evening subscales from existing chronotype 
questionnaires.  
  
As Dr. Martiny pointed out, the dramatic antidepressant response that he has successfully 
employed clinically depends on sleep abstinence for a substantial part of the night and also 
upon the timing of recovery sleep. The term sleep restriction is commonly used for milder 
reductions of sleep duration continuing over weeks or longer. Cognitive-behavioral 
treatments of insomnia that include an element of sleep restriction seem to be 
antidepressant, e.g., see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3353033/ , though it 
is unclear whether time-in-bed or EEG sleep curtailment or earlier morning light exposure is 
most determinative.  The mood effects of long-term mild sleep restriction need more 
clarification, especially for those with long sleep. Although there is a large literature 
decrying the effects of sleeping too little, more mortality and as much morbidity (including 
depression) is associated with unusually long reported sleep durations.  
  
As Dr. Martiny mentioned, many of the ideas assembled in our review are based on meager 
experimental evidence, so more study is clearly needed.  
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