JAMA Psychiatry | Original Investigation

Differential Outcomes of Placebo Treatment Across 9 Psychiatric Disorders A Systematic Review and Meta-Analysis

Tom Bschor, MD; Lea Nagel, MD; Josephine Unger, MD; Guido Schwarzer, MSc, PhD; Christopher Baethge, MD

IMPORTANCE Placebo is the only substance systematically evaluated across common psychiatric diagnoses, but comprehensive cross-diagnostic comparisons are lacking.

OBJECTIVE To compare changes in placebo groups in recent high-quality randomized clinical trials (RCTs) across a broad spectrum of psychiatric disorders in adult patients.

DATA SOURCES MEDLINE and the Cochrane Database of Systematic Reviews were systematically searched in March 2022 for the latest systematic reviews meeting predetermined high-quality criteria for 9 major psychiatric diagnoses.

STUDY SELECTION Using these reviews, the top 10 highest-quality (ie, lowest risk of bias, according to the Cochrane Risk of Bias tool) and most recent placebo-controlled RCTs per diagnosis (totaling 90 RCTs) were selected, adhering to predetermined inclusion and exclusion criteria.

DATA EXTRACTION AND SYNTHESIS Following the Cochrane Handbook, 2 authors independently carried out the study search, selection, and data extraction. Cross-diagnosis comparisons were based on standardized pre-post effect sizes (mean change divided by its SD) for each placebo group. This study is reported following the Meta-analysis of Observational Studies in Epidemiology (MOOSE) reporting guideline.

MAIN OUTCOME AND MEASURE The primary outcome, pooled pre-post placebo effect sizes (d_{av}) with 95% CIs per diagnosis, was determined using random-effects meta-analyses. A *Q* test assessed statistical significance of differences across diagnoses. Heterogeneity and small-study effects were evaluated as appropriate.

RESULTS A total of 90 RCTs with 9985 placebo-treated participants were included. Symptom severity improved with placebo in all diagnoses. Pooled pre-post placebo effect sizes differed across diagnoses (Q = 88.5; df = 8; P < .001), with major depressive disorder ($d_{av} = 1.40$; 95% Cl, 1.24-1.56) and generalized anxiety disorder ($d_{av} = 1.23$; 95% Cl, 1.06-1.41) exhibiting the largest d_{av} . Panic disorder, attention-deficit/hyperactivity disorder, posttraumatic stress disorder, social phobia, and mania showed d_{av} between 0.68 and 0.92, followed by OCD ($d_{av} = 0.65$; 95% Cl, 0.51-0.78) and schizophrenia ($d_{av} = 0.59$; 95% Cl, 0.41-0.76).

CONCLUSION AND RELEVANCE This systematic review and meta-analysis found that symptom improvement with placebo treatment was substantial in all conditions but varied across the 9 included diagnoses. These findings may help in assessing the necessity and ethical justification of placebo controls, in evaluating treatment effects in uncontrolled studies, and in guiding patients in treatment decisions. These findings likely encompass the true placebo effect, natural disease course, and nonspecific effects.

Multimedia
Supplemental content

Author Affiliations: Author affiliations are listed at the end of this article.

Corresponding Author: Tom Bschor, MD, Professor of Psychiatry, Department of Psychiatry and Psychotherapy, University Hospital, Technical University of Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany (bschor@ mailbox.tu-dresden.de).

JAMA Psychiatry. 2024;81(8):757-768. doi:10.1001/jamapsychiatry.2024.0994 Published online May 29, 2024. Placebo is arguably the most extensively investigated therapeutic agent worldwide. In psychiatry, a placebo is deemed ethically acceptable for research in nearly all indications, serving as the sole intervention that has been studied for all psychiatric disorders.

In studies of psychiatric conditions, even patients in placebo groups typically show improvement, making it sometimes challenging to discern a verum-placebo contrast.¹⁻³ Also, placebo effects have increased over the years in studies on major depression⁴⁻⁶ and schizophrenia and schizoaffective disorder.⁷

A genuine placebo effect, by definition, encompasses improvements induced by suggestion, hope for effective treatment, and conditioning effects through the administration of medications. However, other factors might improve psychopathology: psychiatric disorders often have episodic courses. Contextual factors, such as attentive study personnel, compassionate care, supportive conversations, and psychoeducation, can influence outcomes positively.⁸ Life circumstances may change during a study, and regression to the mean is a statistical factor in symptom improvement.⁹ Consequently, all observable changes under a placebo medication are referred to as the *placebo response*.

Placebo response is not equally distributed across different disorders, with limited comprehensive comparisons in psychiatry. Khan and coauthors¹⁰ compared 6 disorders in a 2005 study, which is still the most comprehensive study to date, to our knowledge; however, significant conditions, like mania or social phobia, were not included. Other reviews have focused on depressive disorders^{1,3,6,10-16} or a few other diagnoses.^{7,17-20}

Understanding differential outcomes observed in placebo groups may enrich our knowledge of these conditions, aid clinical trial interpretation, assist treatment decisions, and improve treatments. Therefore, in this systematic review and meta-analysis, we compared placebo responses among a wide spectrum of psychiatric disorders in adults.

Methods

This study aimed to quantify differences in the change of psychopathological symptoms within placebo groups of highquality randomized clinical trials (RCTs) across major psychiatric diagnoses. We compared pooled pre-post effect sizes of placebo groups by diagnosis. The study protocol has been registered in advance on Open-Science-Foundation (identifier: **u469a**). This study is reported following the Meta-analysis of Observational Studies in Epidemiology (MOOSE) reporting guideline.

We selected 9 prevalent and clinically significant psychiatric conditions commonly subject to pharmacological treatment: major depressive disorder (MDD; unipolar recurrent or single episode), mania, schizophrenia, obsessive-compulsive disorder (OCD), attention-deficit/hyperactivity disorder (ADHD), generalized anxiety disorder (GAD), panic disorder, posttraumatic stress disorder (PTSD), and social phobia. We included the 10 most recent high-quality RCTs per diagnosis

Key Points

Question Which psychiatric disorder exhibits the strongest improvement associated with placebo treatment in randomized clinical trials (RCTs)?

Findings This systematic review and meta-analysis of 90 high-quality RCTs with 9985 participants found significant improvement under placebo treatment for all 9 disorders, but the degree of improvement varied significantly among diagnoses. Patients with major depressive disorder experienced the greatest improvement, followed by those with generalized anxiety disorder, panic disorder, attention-deficit/hyperactivity disorder, posttraumatic stress disorder, social phobia, mania, and OCD, while patients with schizophrenia benefited the least.

Meaning These findings may inform planning of RCTs, interpreting of uncontrolled studies, and advising patients for or against a specific treatment.

due to feasibility constraints, using a 2-stage systematic selection process.

Stage 1

In stage 1, we identified the most recent high-quality systematic review pertaining to psychopharmacological acute therapy for each of the diagnoses through systematic literature searches in MEDLINE via PubMed and in the Cochrane Database of Systematic Reviews (search history as well as quality, inclusion, and exclusion criteria are provided in eAppendix 1 in Supplement 1). In this initial step, we restricted the search to 2 databases, as we intended on finding a recent high-quality systematic review rather than all systematic reviews.

Screening for and selection of reviews was carried out in duplicate and independently by 2 of the authors (T.B., L.N., J.U., and C.B.) for each diagnosis. Any discrepancies were resolved by discussion among the entire group of authors. Originally, we aimed to include 10 diagnoses; however, we could not identify a systematic review adhering to stage 1 inclusion criteria for agoraphobia.

Stage 2

In stage 2, the 10 highest-quality RCTs (lowest risk of bias [ROB]) with placebo groups were selected from each of the 9 systematic reviews,²¹⁻²⁹ totaling 90 RCTs reported in 86 publications.³⁰⁻¹¹⁵ The selection was carried out independently by 2 authors (L.N. and J.U.).

All 9 systematic reviews used the Cochrane Risk of Bias tool (first or second version)^{116,117} for ROB analysis of each RCT. The tool categorizes various ROB domains (sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessors, incomplete outcome data, selective reporting of outcomes, and other sources of bias, eg, enriched design). RCTs with the highest number of domains rated as low ROB were included, so that the 10 RCTs per diagnosis with the highest total score were included for analysis. If this process led to more than 10 RCTs we selected the most recent RCTs. Inclusion and exclusion criteria for RCTs are provided in eAppendix 2 in Supplement 1.

Data Collection

Two authors (L.N. and J.U.) independently extracted predefined core data from each study into a standardized spreadsheet (Excel version 1808; Microsoft). Discrepancies were resolved through group discussion. Extracted data included quality ratings, study details (location, duration), active study group intervention, diagnosis confirmation method, and likelihood of receiving placebo. For placebo groups, initial and final participant numbers, age, gender or sex distribution, and psychopathology ratings of changes in the selected outcome or of baseline and follow-up scores, each with corresponding measures of dispersion, were extracted. Where available, Clinical Global Impression (CGI) scores were also extracted. Intention-to-treat data were prioritized (80 studies^{30-35, 37-58, 60-65,} 67-74, 76-78, 80, 81, 83-96, 98, 99, 101, 102, 104-112, 114, 115); if not available, data from observed patients were used. 36,59,66,75,79,82,97,100,103,113 Dropout rates will be presented in a separate publication.

Outcomes Per RCT

Of 90 included RCTs, ³⁰⁻¹¹⁵ only placebo groups were considered. Because RCTs for the different diagnoses used various established psychopathology rating scales, standardized prepost effect sizes¹¹⁸ were used to compare outcomes across diagnoses. Formulae are provided in eAppendix 3 in Supplement 1. We opted against calculating response rates, as these are directly dependent on the response definition, which varied significantly among diagnoses.

In panic disorder, most RCTs used panic attacks per time period as the main outcome. Owing to the nonparametric distribution of rate data and consistent with earlier research,^{10,18,19} we resorted to including RCTs presenting an established outcome scale, such as the Hamilton Anxiety Rating Scale.

Statistical Analysis

Pre-Post Effect Sizes per Diagnosis

The main outcome was pooled pre-post placebo effect sizes per diagnosis (Cohen *d* for within-participant designs using mean SD, $d_{av}^{118,119}$). In random-effects meta-analyses (methodof-moments-estimator DerSimonian and Laird), pooled prepost placebo effect sizes and 95% CIs were calculated by diagnosis. With intention-to-treat data, we followed the imputation methods chosen by trial authors (eg, last observation carried forward or mixed-effects model analysis). For calculations, we used the Magnitude of Effect Size calculator, version 2 (MOTE),¹²⁰ as well as Comprehensive Meta-Analysis version 4 (Biostat). Statistical significance of the difference across pooled effects of all diagnoses was set at 2-sided a = .05 and calculated in a *Q* test.

Small Study Effects and Heterogeneity

To find evidence of small study effects or publication bias, we used funnel plots and calculated Egger test. Heterogeneity was explored using Q statistics and I^2 values, showing variance in excess of random error. Following the Cochrane Handbook,¹²¹ I^2 values between 50% and 90% were classified as substantial heterogeneity and values above 75%, considerable heterogeneity. We also calculated prediction intervals, indicating the possible spread of outcomes in studies similar to those

jamapsychiatry.com

Diagnosis	Review
Major depression	Cipriani et al, 2018 ²¹
Mania	Kishi et al, 2021 ²²
Schizophrenia	Huhn et al, 2019 ²³
Obsessive-compulsive disorder	Skapinakis et al, 2016 ²⁴
Attention-deficit/hyperactivity disorder	Elliott et al, 2020 ²⁵
Generalized anxiety disorder	Kong et al, 2020 ²⁶
Social phobia	Williams et al, 2020 ²⁷
Agoraphobia	None
Panic disorder	Chawla et al, 2022 ²⁸
Posttraumatic stress disorder	Williams et al, 2022 ²⁹

included, whereas CIs provide an estimate of the precision of d_{av} calculated.

Secondary Outcome

In most of the included RCTs, symptom severity was also assessed with the CGI scale. Since CGI is a validated and established transdiagnostic scale, we decided post hoc to repeat our main analysis with CGI severity scores as a validation of the primary outcome. Although a meta-analysis of CGI suggests itself for calculating a nonstandardized mean change, for ease of comparison with the main analysis, we present standardized values.

Regression Analyses

We investigated potential confounders, including age, gender or sex, study duration and size, placebo randomization probability, ROB, and year of publication, in bivariable metaregressions (considering the weights of RCTs included), with diagnoses as second factor to account for clustering by diagnoses. In multivariable meta-regression (mixed-effects, method-of-moments estimator), we included all possible confounders with P < .10 in bivariable analysis and also, on theoretical grounds, diagnosis and study duration. Data were analyzed from October 10 to December 15, 2023.

Results

Stage 1

The literature search (stage 1) was conducted on March 19, 2022, and yielded the results shown in the eTable in Supplement 1. A total of 9 high-quality systematic reviews²¹⁻²⁹ were selected (**Table 1**).

Stage 2

An overview of the 90 RCTs³⁰⁻¹¹⁵ included in the metaanalysis is provided in **Table 2**. A total of 9985 placebotreated study participants were included, distributed across the 9 diagnoses as follows: 1598 participants with MDD,³⁰⁻³⁹ 967 participants with mania,⁴⁰⁻⁴⁶ 888 participants with schizophrenia,⁴⁷⁻⁵⁶ 803 participants with OCD,⁵⁷⁻⁶⁶ 1189 participants with ADHD,⁶⁷⁻⁷⁶ 1457 participants with GAD,⁷⁷⁻⁸⁵ 1180 participants with social phobia,⁸⁶⁻⁹⁵ 1248 participants with

Table 2. Randomized Clinical Trial	s Included in Ana	lyses					
Source	Patients in placebo	Age, mean (SD or range), v	Women,	Probability of receiving	Active drugs	Study duration,	Selected outcome (psychopathology
MDD	group, No.	Tange), y	70	placebo, 76	Active drugs	VVK	Scale)
Alvarez et al, ³⁰ 2012	105	42.0 (10.9)	65.7	25	Vortioxetine, venlafaxine	6	MADRS
Bakish et al, ³¹ 2014	185	42.3 (13.2)	62.4	33.3	Levomilnacipran	8	MADRS
Baldwin et al, ³² 2012	145	43.4 (12.5)	69.6	20	Vortioxetine, duloxetine	8	MADRS
Jain et al, ³³ 2013	286	42.4 (12.7)	54.7	50	Vortioxetin	6	HAM-D-24
Kennedy et al, ³⁴ 2006	105	42.2 (12.0)	55.2	50	Agomelatine	6	HAM-D-17
Liebowitz et al, ³⁵ 2013	223	42 (13)	62	33.3	Desvenlafaxine	8	HAM-D-17
Mahableshwarkar et al, ³⁶ 2015	126	46.2 (11.8)	67.5	33.3	Vortioxetine	8	MADRS
McIntyre et al, ³⁷ 2014	194	45.6 (12.1)	65.8	33.3	Vortioxetine	8	MADRS
Oakes et al, ³⁸ 2012	110	43.9 (11.9)	66.4	33.3	Duloxetine	8	HAM-D Maier subscale
Olie et al, ³⁹ 2007	119	45.6 (11.2)	75	50	Agomelatine	6	HAM-D-17
Overall MDD, mean (SD)	159.8 (57.7)	43.6 (1.6)	64.4 (5.9)	36.2 (10.0)	NA	7.2 (1.0)	NA
Mania							
Berwaerts et al, ⁴⁰ 2012	115	41.0 (11.2)	45	25	Paliperidone	3	YMRS total score
Kushner et al, ⁴¹ 2006; cohort A	111	42 (13)	49	25	Topiramate, lithium	3	YMRS total score
Kushner et al, ⁴¹ 2006; cohort B	98	37 (10)	60	33.3	Topiramate	3	YMRS total score
Kushner et al, ⁴¹ 2006; cohort C	106	40 (11)	37	50	Topiramate	3	YMRS total score
Kushner et al, ⁴¹ 2006; cohort D	112	41 (12)	60	33.3	Topiramate, lithium	3	YMRS total score
Landbloom et al, ⁴² 2016	126	44.6 (11.5)	57.1	33.3	Asenapine	3	YMRS total score
Potkin et al, ⁴³ 2005	65	39 (11.5)	45.5	33.3	Ziprasidone	3	MRS score
Tohen et al, ⁴⁴ 2008	99	40.6 (12.8)	46.5	20	Olanzapine, valproate	3	YMRS total score
Vieta et al, ⁴⁵ 2010	104	38 (10)	47	20	Paliperidone quetiapine	3	YMRS total score
Yildiz et al, ⁴⁶ 2008	31	36 ^a (18-54)	52	50	Tamoxifen	3	YMRS total score
Overall mania, mean (SD)	96.7 (26.6)	39.9 (2.4)	49.9 (7.0)	32.3 (10.2)	NA	3.0 (0.0)	NA
Schizophrenia							
Coppola et al, ⁴⁷ 2011	63	36.5 (11.6)	28.1	33.3	Paliperidone	6	PANSS total score
Egan et al, ⁴⁸ 2013	78	36.4 (8.5)	36.1	40	Mk-8998, olanzapine	4	PANSS total score
Kane et al, ⁴⁹ 2015	145	36.7 (11.3)	25.2	33.3	Cariprazine	6	PANSS total score
Kane et al, ⁵⁰ 2016	93	38.8 (11.4)	38.9	20	Brexpiprazole, aripiprazole	6	PANSS total score
Litman et al, ⁵¹ 2014	39	40.2 (11.6)	4.9	40	Pavinetant, olanzapine	4	PANSS total score
Loebel et al, ⁵² 2016	112	40.7 (11.6)	30.4	25	Lurasidone	6	PANSS total score
Meltzer et al, ⁵³ 2011	114	37 (11.3)	23	25	Lurasidone olanzapine	6	PANSS total score
Nasrallah et al, ⁵⁴ 2013	124	38.2 (9.9)	27.4	25	Lurasidone	6	PANSS total score
Ogasa et al, ⁵⁵ 2012	49	38.1 (9.7)	16	33.3	Lurasidone	6	BPRS score
Potkin et al, ⁵⁶ 2015	71	41 (9.7)	23.6	20	Lurasidone, haloperidol	6	BPRS score
Overall schizophrenia, mean (SD)	88.8 (32.8)	38.4 (1.7)	25.4 (9.2)	29.5 (7.1)	NA	5.6 (0.8)	NA
OCD							
GlaxoSmithKline, ⁵⁷ 2005a	75	36.3 (10.7)	29.9	33.3	Paroxetine, clomipramine	12	Y-BOCS total score
Goodman et al, ⁵⁸ 1996	78	36.6 (19-69)	50	50	Fluvoxamine	10	Y-BOCS total score
Hollander et al, ⁵⁹ 2003a	73	43.1 (12.3)	33	25	Paroxetine	12	Y-BOCS total score
Hollander et al, ⁶⁰ 2003b	120	36.7 (1.1 ^b)	67	50	Fluvoxamine	12	Y-BOCS total score
Kamijima et al, ⁶¹ 2004	94	38.5 (12.2)	58.5	50	Paroxetine	12	Y-BOCS total score
Kobak et al, ⁶² 2005	30	38.38 (10.6)	43.3	50	St. John's wort	12	Y-BOCS total score
Kronig et al, ⁶³ 1999	79	38.1 (12.0)	47	50	Sertraline	12	Y-BOCS total score

(continued)

760 JAMA Psychiatry August 2024 Volume 81, Number 8

Table 2. Randomized Clinical Trials Included in Analyses (continued)									
Source	Patients in placebo group, No	Age, mean (SD or range) y	Women,	Probability of receiving placebo %	Active drugs	Study duration, wk	Selected outcome (psychopathology scale)		
Montgomery et al. ⁶⁴ 1993	56	36.3 (11.2)	41.1	25	Fluoxetine	8	Y-BOCS total score		
Montgomery et al. ⁶⁵ 2001	101	38.6 (12.1)	50.1	25	Citalopram	12	Y-BOCS total score		
Stein et al, ⁶⁶ 2007	97	37.6 (11.8)	55.3	25	Escitalopram, paroxetine	12	Y-BOCS total score		
Overall OCD, mean (SD)	80.3 (23.8)	38.0 (1.9)	47.5 (10.7)	38.3 (11.9)	NA	11.4 (1.3)	NA		
ADHD									
Adler et al, ⁶⁷ 2013	75	34.9 (11.0)	46.3	50	Lisdexamfetamine	10	BRIEF-A GEC		
Casas et al, ⁶⁸ 2013	97	35.5 (8.8)	46.4	33.3	Methylphenidate	13	CAARS-O:SV		
Frick et al, ⁶⁹ 2020	103	35.6 (9.8)	44.2	25	Triple-bead mixed amphetamine salts	6	ADHD-RS-IV total score		
Goodman et al, ⁷⁰ 2017	172	34.7 (11.6)	45.1	50	Methylphenidate	6	AISRS		
Goto et al, ⁷¹ 2017	195	31.7 (7.8)	51.3	50	Atomoxetine	10	CAARS-Inv:SV total score		
Huss et al, ⁷² 2014	161	36.8 (12.2)	44.2	25	Methylphenidate	9	DSM-IV ADHD RS		
Medori et al, ⁷³ 2008	95	34.5 ^a (32.5-36.4 ^c)	38.5	25	Methylphenidate	5	CAARS:O-SV		
Takahashi et al, ⁷⁴ 2014	140	34.1 (9.0)	51.8	50	Methylphenidate	8	CAARS-O:SV DSM-IV symptom score		
Weisler et al, ⁷⁵ 2012	65	33.4 (10.3)	41.1	16.67	Bavisant, atomoxetine	6	ADHD-RS-IV total score		
Weisler et al, ⁷⁶ 2017	86	34.5 (10.8)	52.8	33.3	Triple-bead mixed amphetamine salts	4	ADHD-RS-AP total score		
Overall ADHD, mean (SD)	118.9 (42.5)	34.6 (1.3)	46.2 (4.4)	35.8 (12.4)	NA	7.7 (2.6)	NA		
GAD									
Bidzan et al, ⁷⁷ 2012	148	45.3 (13.5)	61.6	50	Vortioxetine	8	HAM-A total score		
Kasper et al, ⁷⁸ 2014	135	44.6 (12.3)	73.3	25	Lavender oil extract, paroxetine	10	HAM-A total score		
Mahableshwarkar et al, ⁷⁹ 2014	120	36.8 (12.1)	65	20	Vortioxetine, duloxetine	8	HAM-A total score		
Nicolini et al, ⁸⁰ 2009	163	42.8 (NA)	57.1	28.6	Duloxetine, venlafaxine	10	HAM-A total score		
Pollack et al, ⁸¹ 2008; cohort 2	226	39.9 (12)	61	50	Tiagabine	10	HAM-A total score		
Pollack et al, ⁸¹ 2008; cohort 3	223	40.8 (11.5)	58	50	Tiagabine	10	HAM-A total score		
Rothschild et al, ⁸² 2012	113	41.4 (12.8)	63.8	50	Vortioxetine	8	HAM-A total score		
Stein et al, ⁸³ 2008	58	41.7 (6.9)	68.8	50	Agomelatine	12	HAM-A total score		
Stein et al, ⁸⁴ 2014	131	43 (12.2)	71.8	33.3	Agomelatine escitalopram	12	HAM-A total score		
Stein et al, ⁸⁵ 2017	140	44.1 (13.1)	63.4	33.3	Agomelatine	12	HAM-A total score		
Overall GAD, mean (SD)	145.7 (47.4)	42.0 (2.4)	64.4 (5.2)	39.0 (11.6)	NA	10.0 (1.6)	NA		
Social phobia									
Allgulander et al, ⁸⁶ 2004	132	38.9 (10.6)	62	33.3	Venlafaxine, paroxetine	12	LSAS total score		
Asakura et al, ⁸⁷ 2016	196	33 (18-63)	55.6	33.3	Escitalopram	12	LSAS-J total score		
Baldwin et al, ⁸⁸ 1999	151	37.3 (11.4)	54.3	50	Paroxetine	12	LSAS total score		
Davidson et al, ⁸⁹ 1993	33	37.3 (9.5)	42	50	Clonazepam	10	LSAS total score		
Davidson et al, ⁹⁰ 2004	126	37.2 (0.9 ^b)	31	50	Fluvoxamine	12	LSAS total score		
Lepola et al, ⁹¹ 2004	184	39 (11.5)	47	50	Paroxetine	12	LSAS total score		
Schneier et al, ⁹² 1998	37	34.1 (8.2)	32.4	50	Moclobemide	8	LSPDS overall severity		
Stein et al, 93 1998	92	36.7 (18-76)	60.2	50	Paroxetine	12	LSAS total score		
Stein et al, ⁹⁴ 2005	126	37.7 (11.9)	43	33.3	Venlafaxine	28	LSAS total score		
Stein et al, ⁹⁵ 2010	103	35.8 (11.9)	35.8	50	Levetiracetam	12	LSAS total score		
Overall social phobia, mean (SD)	118 (51.5)	36.7 (1.8)	46.3 (10.8)	45.0 (7.7)	NA	13.0 (5.2)	NA		
Panic disorder									
Asnis et al, 96 2001	92	36.7 (9.8)	64.1	50	Fluvoxamine	8	CAS item 7		
Ballenger et al, ⁹⁷ 1988	234	37.5 (10.2)	68	50	Alprazolam	8	HAM-A total score		

(continued)

jamapsychiatry.com

Table 2. Randomized Clinical Trials included in Analyses (continued)										
Source	Patients in placebo group, No.	Age, mean (SD or range), y	Women, %	Probability of receiving placebo, %	Active drugs	Study duration, wk	Selected outcome (psychopathology scale)			
Ballenger et al, ⁹⁸ 1998	69	37.3 (10.4)	68.1	25	Paroxetine	10	HAM-A total score			
Caillard et al, ⁹⁹ 1999	51	37 (10)	58.8	33.3	Clomipramine	8	HAM-A total score			
Liebowitz et al, ¹⁰⁰ 2009	105	36.7 (12.0)	59	50	Venlafaxine	10	HAM-A total score			
Michelson et al, ¹⁰¹ 1998	74	37.9 (11.5)	67.9	33.3	Fluoxetine	10	HAM-A total score			
Noyes et al, ¹⁰² 1996	79	36.6 (10.5)	65.2	33.3	Alprazolam, diazepam	8	HAM-A total score			
Pohl et al, ¹⁰³ 1998	73	37.5 (11.5)	57	50	Sertraline	10	Multicenter Panic Anxiety Scale			
Pollack et al, ¹⁰⁴ 1998	87	34.9 (9.6)	61	50	Sertraline	10	HAM-A total score			
Sheehan et al, ¹⁰⁵ 2005	384	37.8 (10.6)	56.4	50	Paroxetine	10	HAM-A total score			
Overall panic disorder, mean (SD)	124.8 (99.0)	37.0 (0.8)	62.6 (4.4)	42.5 (9.5)	NA	9.2 (1.0)	NA			
PTSD										
Connor et al, ¹⁰⁶ 1999	26	38 (33-41 ^d)	93	50	Fluoxetine	12	Duke Global Rating for PTSD			
Davidson et al, ¹⁰⁷ 2006	168	40.5 (13.0)	53	50	Venlafaxine	24	CAPS-SX17 score			
Davis et al, ¹⁰⁸ 2008	41	55.2 (6.8)	2	50	Divalproex	8	CAPS total			
Davis, 109 2017	44	36.6 (10.5)	8.7	50	Nepicastat	6	CAPS total			
Davis et al, ¹¹⁰ 2020	34	38.1 (9.5)	7.7	50	Mirtazapine	8	SIP			
Friedman et al, ¹¹¹ 2007	82	37.8 (8.4)	19.3	50	Sertraline	12	CAPS-2 total score			
Li et al, ¹¹² 2017	36	44.9 (5.8)	11.1	50	Sertraline	12	IES-R			
Raskind et al, ¹¹³ 2018	136	51.4 (13.8)	0.7	50	Prazosin	10	CAPS total			
Rasmusson et al, ¹¹⁴ 2017	50	37.7 (10.9)	17	50	Ganaxolone	6	CAPS total			
Villarreal et al, ¹¹⁵ 2016	38	54 (10)	3	50	Quetiapine	12	CAPS total			
Overall PTSD, mean (SD)	65.5 (46.1)	43.4 (7.0)	21.5 (27.8)	50.0 (0.0)	NA	11.0 (4.9)	NA			

Abbreviations: ADHD, attention-deficit/hyperactivity disorder; ADHD-RS-AP, ADHD Rating Scale with Adult Prompts; ADHD-RS-IV, ADHD Rating Scale, version IV; AISRS, Adult ADHD Investigator Symptom Rating Scale; BPRS, Brief Psychiatric Rating Scale; BRIEF-A GEC, Behavior Rating Inventory of Executive Function-Adult Version, Global Executive Composite; CAARS-Inv:SV, Conners' Adult ADHD Rating Scale-Investigator Rated: Screening Version; CAARS-O:SV, Conners' Adult ADHD Rating Scales-Observer: Screening Version; CAPS, Clinician-Administered PTSD Scale for *DSM-5*; CAPS-2, Part 2 of the Clinician-Administered PTSD Scale; CAPS-5X17, Clinician-Administered PTSD Scale, abbreviated 1-Week Symptom Status Version; CAS, Clinical Anxiety Scale; *DSM-5*, *Diagnostic and Statistical Manual of Mental Disorders* (Fifth Edition); *DSM-IV*, *Diagnostic and Statistical Manual of Mental Disorders* (Fourth Edition); GAD, generalized anxiety disorder; HAM-A, Hamilton Anxiety Rating Scale; HAM-D, Hamilton Depression Rating Scale, 17-item version; HAM-D-24, Hamilton Depression Rating Scale, 24-item version; IES-R, Impact of Event Scale–Revised; LSAS, Liebowitz Social Anxiety Scale; LSAS-J, Liebowitz Social Anxiety Scale, Japanese version; LSPDS, Liebowitz Social Phobic Disorders Scale–Severity; MADRS, Montgomery-Åsberg Depression Rating Scale; MRS, Mania Rating Scale; NA, not applicable; OCD, obsessive-compulsive disorder; PANSS, Positive and Negative Syndrome Scale for Schizophrenia; SIP, Structured Interview for PTSD; Y-BOCS, Yale-Brown Obsessive Compulsive Scale; YMRS, Young Mania Rating Scale.

^a Expressed as median instead of mean.

^b Expressed as SE.

^c Expressed as 95% Cl.

^d Expressed as quartiles.

panic disorder, $^{96\cdot105}$ and 655 participants with PTSD. $^{106\cdot115}$ There was no indication of small-study effects or publication bias based on findings from a funnel plot (eFigure in Supplement 1) or from Egger test (P = .95).

There was an overrepresentation of women in depression, GAD, and panic disorder studies and an underrepresentation of women in schizophrenia and PTSD studies, whereas age, on the study level, varied only moderately. The duration of the studies also differed based on the diagnosis, with a relatively long duration of up to 12 weeks for OCD, social phobia, and GAD, and a shorter duration of 3 weeks for mania (Table 2).

Main Outcome

In all diagnoses, there were improvements in symptom severity during placebo treatment (ie, the lower limit of the 95% CIs of the pooled pre-post placebo effect sizes were >0). As indicated by the *Q* test, the pooled pre-post placebo effect sizes differed statistically significantly among the disorders (Q = 88.5; df = 8; $P \le .001$) (Figure 1). The largest effect size was observed in MDD ($d_{av} = 1.40$; 95% CI, 1.24 to 1.56), followed by GAD ($d_{av} = 1.23$; 95% CI, 1.06 to 1.41). Schizophrenia had the smallest effect size ($d_{av} = 0.59$; 95% CI, 0.41 to 0.76) and OCD had the second weakest ($d_{av} = 0.65$; 95% CI, 0.51 to 0.78). There were no overlaps of the 95% CIs of GAD and depression with the 95% CIs of panic disorder, ADHD, social phobia, mania, OCD, and schizophrenia (Figure 1).

The placebo response varied substantially from study to study, as indicated by heterogeneity values (I^2 >75% for GAD, mania, MDD, PTSD, and schizophrenia) (Figure 1). The prediction intervals were 0.84 to 1.96 for MDD, 0.60 to 1.87 for GAD, 0.60 to 1.23 for GAD, -0.31 to 1.99 for PTSD, 0.29 to 1.15 for social phobia, 0.06 to 1.30 for mania, 0.19 to 1.10 for OCD, and -0.02 to 1.19 for schizophrenia. For ADHD, a prediction interval was not assessed due to uniform effect sizes (I^2 = 0); thus,

Figure 1. Random-Effects Meta-Analysis Estimates of Pooled Pre-Post Placebo Effect Sizes

Diagnosis	Study participants, No	0	12.%	ES (95% CI)				
MDD	1598	47.9	81	1.40 (1.24-1.56)				
GAD	1457	61.4	85	1.23 (1.06-1.41)				-
Panic disorder	1307	20.8	57	0.92 (0.81-1.02)				
ADHD	1189	7.3	0	0.88 (0.81-0.95)				
PTSD	655	99.8	91	0.84 (0.53-1.15)			-	
Social phobia	1180	34.7	74	0.72 (0.59-0.85)			⊢	
Mania	967	53.1	83	0.68 (0.51-0.85)				
OCD	819	29.6	70	0.65 (0.51-0.78)			-	
Schizophrenia	888	50.0	82	0.59 (0.41-0.76)			-	
Heterogeneity: χ^{ξ}_{2}	= 88.50 (P<.01)				r	1		
					0	0.5	1.0	1.5
						Pooled pre-	post placebo	o ES (95% CI)

Random-effects meta-analysis estimates of Cohen day pooled pre-post placebo effect sizes (ES) and 95% CIs of placebo groups in randomized clinical trials by diagnosis (90 studies; 10 for each diagnosis). ADHD indicates attention-deficit/ hyperactivity disorder; GAD, generalized anxiety disorder; MDD, major depressive disorder; OCD, obsessive-compulsive disorder: and PTSD, posttraumatic stress disorder.

Figure 2. CGI Severity Score Based Random-Effects Meta-Analysis Estimates of Pooled Pre-Post Placebo Effect Sizes

Diagnosis	Studies, No.	Q	I ² , %	CGI severity score based effect size	-					(95% PI)
MDD	6	5.3	5	1.08 (1.01-1.16)			-			NA
GAD	6	164.9	97	1.63 (1.01-2.24)				-		(-0.64 to 3.89)
Panic disorder	6	21.5	77	1.09 (0.89-1.29)				_		(0.43 to 1.75)
ADHD	2	17.2	94	0.82 (0.23-1.41)			-			ND
PTSD	6	65.4	92	0.72 (0.29-1.14)			<u> </u>			(-0.04 to 1.47)
Social phobia	6	36.1	86	0.67 (0.44-0.89)						(-0.42 to 1.75)
Mania	4	27.0	89	0.42 (0.06-0.78)		_	-			(-1.27 to 2.11)
OCD	3	1.6	0	0.55 (0.42-0.69)						NA
Schizophrenia	8	28.5	76	0.75 (0.59-0.91)		-	-			(0.21 to 1.29)
					0	0.5	1.0	1.5	2.0	2.5
						CGI	severity s	core (95	% CI)	

2.0

Pooled pre-post effect sizes (Cohen d_{av}), 95% CIs, and 95% prediction intervals (PIs) in random-effects meta-analysis in randomized clinical trials of 9 different psychiatric diagnoses. Q = 71.2; df = 8; P < .001. ADHD indicates attention-deficit/hyperactivity disorder; GAD, generalized anxiety disorder; MDD, major depressive disorder; NA, not assessed (all studies share a common

effect size: thus l^2 was very low and there was no difference between CI and PI): ND, not done (number of studies too small for valid determination [ie, <3 studies]); OCD, obsessive-compulsive disorder; and PTSD, posttraumatic stress disorder.

there was no difference between CI and prediction interval results.

Clinical Global Impression

In 47 studies. 32-35, 37, 39, 42-44, 46, 48-50, 52-57, 60, 64, 70, 73, 78, 79, 82-91, 96, 98-100, 104, 105, 107, 108, 110-112, 115 CGI severity score (CGI-S) results allowed a transdiagnostic comparison on the same scale. Results of standardized comparisons corroborated main analysis findings, highlighting pronounced placebo responses in GAD, panic disorder, and MDD (Figure 2). Diagnoses differed significantly (Q = 71.2; df = 8; P < .001). Again, substantial heterogeneity across studies was apparent (I^2 >75%), except for MDD (I^2 = 5%) and OCD (I^2 = 0%). Summary outcomes based on mean differences, as opposed to standardized mean differences, of CGI-S supported standardized-based results for both the CGI-S-related and the primary analyses.

Bivariable and Multivariable Meta-Regressions

Bivariable meta-regressions indicated potential associations of pre-post effect sizes with gender or sex (slope point estimate, 0.0084; 95% CI, 0.0036 to 0.0133), study duration (slope point estimate, 0.0202; 95% CI, 0.0002 to 0.0402), and

jamapsychiatry.com

probability of placebo assignment (slope point estimate, -0.0047; 95% CI, -0.0103 to 0.0008). In multivariable analysis, apart from diagnosis, only gender or sex remained statistically significantly associated with pooled pre-post effect sizes (slope point estimate, 0.0076; 95% CI, 0.0026 to 0.0126; P = .003), indicating that with each percentage point of women in the study, the effect size increased by 0.0076, or by 0.19 with 25% more women ($R^2 = 51\%$; goodness of fit [residual heterogeneity]: Q = 354.97; df = 78; P < .001). Bivariable and multivariable analyses based on CGI-S supported this finding.

Discussion

This systematic review and meta-analysis of placebo groups of RCTs for 9 psychiatric diagnoses had 5 main findings. First, symptom improvement occurred in all conditions under placebo treatment. Second, the improvements were of considerable magnitude. Third, improvement varied significantly among disorders and was particularly strong in MDD and GAD, while schizophrenia, OCD, and mania had comparatively modest improvements. Fourth, for most diagnoses, there was substantial or considerable variability in the improvements across RCTs. Fifth, alongside diagnoses, an increasing proportion of women was associated with larger improvements in placebo groups.

First, symptom improvement in all disorders is in line with previous studies,^{10,13,19,20} but our study expands insight toward a broader range of diagnoses. A secondary CGI-S analysis supported our findings. Second, even without systematic treatment, such as psychotherapy, meaningful improvements were evident. The more pronounced the improvement in the placebo groups, the more the treatment could at least initially be justified by the omission of medication. The significant improvements under placebo treatment justify placebo controls in psychiatric research. Of note, pre-post effect sizes, whether for placebo or active treatments, are in a different order of magnitude than effect sizes resulting from the comparison of an intervention group with a control group, at least in psychiatry.

Third, previous studies have already reported a particularly large effect of placebo in MDD^{4,6,11,12,14-16} and GAD,^{10,19} with a comparatively smaller effect in OCD.^{13,17-20} Schizophrenia,⁷ mania,^{17,20} ADHD, and PTSD have been comparatively less studied.

To date, depression studies have been investigated the most extensively. Some investigators submit that more than three-quarters¹²² or two-thirds⁶ of the positive outcomes observed under a treatment with an antidepressant may be attributed to nonspecific and placebo effects, although it should be noted that the diagnosis of depression encompasses a wide range of disorders, rather than being a specific entity.¹²³ This appears counterintuitive, given depression's impact on hope and confidence. However, affective disorders commonly follow an episodic course. Additionally, interpersonal support, psychoeducation, inspiring of hope, and the conveyance of medical concepts constitute fundamental components of antidepressant psychotherapy but are also often evident in placebo groups.

The large and robust improvements observed in ADHD studies have not been reported to our knowledge. Notable differences among anxiety disorders exist. GAD studies presented the largest improvements, and social phobia studies presented relatively modest improvements. Panic disorder again showed a moderate effect size, and OCD, often classified as an anxiety disorder, showed relatively small improvements in the placebo group.

We found that patients with schizophrenia had the least benefit associated with placebo treatment, possibly due to episodic relapses and an unfavorable prognosis.¹²⁴ Impaired interpersonal functioning might reduce the impact of personal attention and nonspecific effects in placebo groups. Distorted reality perception and limited insight into illness may hinder the development of hope and belief in effective treatment. However, these hypotheses cannot be proven with our approach. Furthermore, the relatively small improvement observed in mania studies is reasonable with regard to impaired illness awareness and little desire for treatment.

Uncontrolled studies often gauge treatment effectiveness using pre-post findings or historical control comparisons. In this regard, our analyses highlight the importance of understanding symptom trajectories without specific treatment, underscoring the crucial role of placebo controls, especially for diagnoses with substantial placebo effects.

Fourth, the high heterogeneity, with *I*² values greater than 75% for MDD, GAD, PTSD, mania, and schizophrenia, indicates significant variation within diagnoses across RCTs. This suggest prudence in drawing conclusions but is also unsurprising, considering internal and external influences, like study design and illness characteristics. Notably, active treatment group pre-post effect sizes also vary, such as in MDD studies.¹²² Meta-analyses of single study groups typically exhibit greater between-study heterogeneity than pairwise analyses under the same conditions.¹²⁵ In multivariable meta-regression, we found no association of pre-post effect sizes with study duration or the likelihood of receiving placebo. This latter differs from previous analyses of depression studies.¹²⁶ Overall, diagnosis differences in our study were not solely explained by study design variations.

Fifth, the positive association of response and proportion of women participants cannot be explained by higher female participation in MDD and GAD studies alone and requires further investigation. Our study cannot determine whether this signifies a generally better prognosis in women, as seen in schizophrenia,^{127,128} or if women particularly benefit from nonspecific factors in clinical studies.

Limitations

This study has several limitations. Our analysis cannot precisely attribute measured changes to the placebo effect in the strict sense. Assessments would require studies with a group receiving no study medication or treatment at all, a rarity in psychiatry. A 2023 review provides an overview of contextual effects in general medicine.¹²⁹ A 1998 depression study indirectly compared placebo groups with psychotherapy waiting-list groups, estimating the placebo effect's contribution to the overall improvement with an antidepressant to be approximately 50%.¹²² However, the study did not account for potential nocebo effects associated with waiting-list assignment.¹³⁰

Our study, limited to adults, encountered variations in study designs both among and within diagnostic groups, affecting multiple factors, like study duration and placebo likelihood. Reassuringly, regression analyses yielded no positive signal regarding these potential confounders. Nevertheless, the heterogeneity in most disorders suggests prudence in drawing firm conclusions at this point. We see the association of gender or sex and placebo response found in our multivariable analyses as preliminary. These analyses are hypothesis generating and must be interpreted with caution. For example, this association is prone to an ecological fallacy, and individual patient data are necessary to uncover a true association.

Furthermore, it was not possible to analyze all placebocontrolled studies conducted on the 9 disorders, but our sample is reliable, systematically including high-quality and current RCTs through a preregistered protocol. Excluding lowquality RCTs (ie, high ROB) is particularly relevant in the analysis of placebo effects, which strongly depend, for example, on the success of blinding.¹³¹ However, ROB primarily pertains to

disorders where confidence, conditioning, and belief play a

significant role. Our findings could inform the interpretation

of placebo-controlled trials, where the medication-placebo

encompassing psychogenic and biological determinants,

intricately linked and interactive, is postulated. Over the

past decades, diverse research paradigms, including genetic

examinations and functional imaging, have been diligently used to assess individual factors.¹³² Comparing the courses of different disorders under placebo indirectly may assist in understanding disease etiology, possibly providing insights

into the proportionate influence of organic and psychogenic

factors.¹⁰ Conditions with presumed substantial hereditary

and biological components, such as schizophrenia,¹³³ exhib-

ited modest placebo responses in our analysis. Conversely, disorders with potentially less biological contribution, eg,

depression and GAD, showed stronger responses. Our study

may serve as an initial framework for incorporating the com-

prehensive insights derived from placebo groups of controlled trials into the etiopathogenetic exploration of mental

For all disorders in our analysis, a multifactorial etiology

difference typically is the primary outcome.

comparing different treatment groups within a study and can only indirectly be applied to the pre-post analysis of just 1 study group (placebo). Variability in psychopathology scales used for placebo group effects measurement might limit comparability. Comparing pre-post effect sizes is the best statistical approach for this purpose, as seen in prior analyses across diagnoses.^{10,19} Using the CGI-S, we were able to confirm our results with a transdiagnostic scale. However, this was possible for only slightly more than half of the RCTs.

Conclusions

This systematic review and meta-analysis of placebo groups from high-quality RCTs covering a spectrum of 9 core psychiatric disorders found considerable improvements, with significant interdisorder differences not primarily linked to study design variations. Insights into the course of illness under placebo may aid in judging the urgency of specific treatments and help to understand the illness course in the absence of a specific intervention. A better understanding of placebo responses may improve treatments, especially in psychiatric

ARTICLE INFORMATION

Accepted for Publication: March 11, 2024.

Published Online: May 29, 2024. doi:10.1001/jamapsychiatry.2024.0994

Author Affiliations: Department of Psychiatry and Psychotherapy, University Hospital, Technical University of Dresden, Dresden, Germany (Bschor, Nagel); Federal Joint Committee (G-BA), Berlin, Germany (Nagel); Social Psychiatric Service, Berlin district of Reinickendorf, Berlin, Germany (Unger); Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany (Schwarzer); Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Cologne, Cologne, Germany (Baethge); Government Commission for Modern and Needs-Based Hospital Care, Berlin, Germany (Bschor).

Author Contributions: Dr Bschor had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Drs Bschor and Nagel contributed equally.

Concept and design: Bschor, Nagel, Baethge. *Acquisition, analysis, or interpretation of data:* All authors.

Drafting of the manuscript: Bschor, Baethge. Critical review of the manuscript for important intellectual content: All authors.

Statistical analysis: All authors.

Administrative, technical, or material support: Bschor, Nagel, Unger.

Supervision: Bschor, Baethge.

Conflict of Interest Disclosures: None reported.

Disclaimer: Dr Nagel did not conduct this work on behalf of her employer, the Federal Joint Committee of Germany.

Data Sharing Statement: See Supplement 2.

Additional Contributions: Anna Kleemann, MSc (personal assistant to Tom Bschor), assisted in data

acquisition and manuscript preparation. She was not compensated for this work.

illnesses.

REFERENCES

1. Khan A, Detke M, Khan SR, Mallinckrodt C. Placebo response and antidepressant clinical trial outcome. *J Nerv Ment Dis*. 2003;191(4):211-218. doi:10.1097/01.NMD.0000061144.16176.38

2. Yang H, Cusin C, Fava M. Is there a placebo problem in antidepressant trials? *Curr Top Med Chem*. 2005;5(11):1077-1086. doi:10.2174/ 156802605774297092

 Iovieno N, Papakostas GI. Correlation between different levels of placebo response rate and clinical trial outcome in major depressive disorder: a meta-analysis. *J Clin Psychiatry*. 2012;73(10): 1300-1306. doi:10.4088/JCP.11r07485

4. Walsh BT, Seidman SN, Sysko R, Gould M. Placebo response in studies of major depression: variable, substantial, and growing. *JAMA*. 2002;287 (14):1840-1847. doi:10.1001/jama.287.14.1840

5. Stolk P, Ten Berg MJ, Hemels ME, Einarson TR. Meta-analysis of placebo rates in major depressive disorder trials. *Ann Pharmacother*. 2003;37(12): 1891-1899. doi:10.1345/aph.1D172

6. Rief W, Nestoriuc Y, Weiss S, Welzel E, Barsky AJ, Hofmann SG. Meta-analysis of the placebo response in antidepressant trials. *J Affect Disord*. 2009;118(1-3):1-8. doi:10.1016/j.jad.2009.01.029

7. Rutherford BR, Pott E, Tandler JM, Wall MM, Roose SP, Lieberman JA. Placebo response in antipsychotic clinical trials: a meta-analysis. *JAMA Psychiatry*. 2014;71(12):1409-1421. doi:10.1001/ jamapsychiatry.2014.1319

8. Frank JD, Frank JB. Persuasion and Healing: A Comparative Study of Psychotherapy. 3rd ed. Johns Hopkins University Press; 1991. doi:10.56021/ 9780801840678

9. Barnett AG, van der Pols JC, Dobson AJ. Regression to the mean: what it is and how to deal with it. *Int J Epidemiol*. 2005;34(1):215-220. doi:10.1093/ije/dyh299 Khan A, Kolts RL, Rapaport MH, Krishnan KR, Brodhead AE, Browns WA. Magnitude of placebo response and drug-placebo differences across psychiatric disorders. *Psychol Med*. 2005;35(5): 743-749. doi:10.1017/S0033291704003873

11. Furukawa TA, Cipriani A, Atkinson LZ, et al. Placebo response rates in antidepressant trials: a systematic review of published and unpublished double-blind randomised controlled studies. *Lancet Psychiatry*. 2016;3(11):1059-1066. doi:10.1016/ S2215-0366(16)30307-8

12. Meister R, Jansen A, Härter M, Nestoriuc Y, Kriston L. Placebo and nocebo reactions in randomized trials of pharmacological treatments for persistent depressive disorder: a meta-regression analysis. *J Affect Disord*. 2017; 215:288-298. doi:10.1016/j.jad.2017.03.024

13. Li F, Nasir M, Olten B, Bloch MH. Meta-analysis of placebo response in adult antidepressant trials. *CNS Drugs*. 2019;33(10):971-980. doi:10.1007/s40263-019-00662-y

14. Jones BDM, Razza LB, Weissman CR, et al. Magnitude of the placebo response across treatment modalities used for treatment-resistant depression in adults: a systematic review and meta-analysis. *JAMA Netw Open*. 2021;4(9):e2125531. doi:10.1001/jamanetworkopen.2021.25531

 Salanti G, Chaimani A, Furukawa TA, et al. Impact of placebo arms on outcomes in antidepressant trials: systematic review and meta-regression analysis. *Int J Epidemiol*. 2018;47 (5):1454-1464. doi:10.1093/jije/dyy076

16. Holper L, Hengartner MP. Comparative efficacy of placebos in short-term antidepressant trials for major depression: a secondary meta-analysis of placebo-controlled trials. *BMC Psychiatry*. 2020;20 (1):437. doi:10.1186/s12888-020-02839-y

17. Keck PE Jr, Welge JA, McElroy SL, Arnold LM, Strakowski SM. Placebo effect in randomized, controlled studies of acute bipolar mania and depression. *Biol Psychiatry*. 2000;47(8):748-755. doi:10.1016/S0006-3223(99)00311-X

jamapsychiatry.com

18. Huppert JD, Schultz LT, Foa EB, et al. Differential response to placebo among patients with social phobia, panic disorder, and obsessive-compulsive disorder. *Am J Psychiatry*. 2004;161(8):1485-1487. doi:10.1176/appi.ajp.161.8. 1485

19. Sugarman MA, Kirsch I, Huppert JD. Obsessive-compulsive disorder has a reduced placebo (and antidepressant) response compared to other anxiety disorders: a meta-analysis. *J Affect Disord*. 2017;218:217-226. doi:10.1016/j.jad.2017.04. 068

20. Cao B, Liu YS, Selvitella A, et al. Differential power of placebo across major psychiatric disorders: a preliminary meta-analysis and machine learning study. *Sci Rep.* 2021;11(1):21301. doi:10.1038/s41598-021-99534-z

21. Cipriani A, Furukawa TA, Salanti G, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. *Lancet.* 2018; 391(10128):1357-1366. doi:10.1016/S0140-6736(17) 32802-7

22. Kishi T, Ikuta T, Matsuda Y, et al. Pharmacological treatment for bipolar mania: a systematic review and network meta-analysis of double-blind randomized controlled trials. *Mol Psychiatry*. 2022;27(2):1136-1144. doi:10.1038/ s41380-021-01334-4

23. Huhn M, Nikolakopoulou A, Schneider-Thoma J, et al. Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: a systematic review and network meta-analysis. *Lancet*. 2019; 394(10202):939-951. doi:10.1016/S0140-6736(19) 31135-3

24. Skapinakis P, Caldwell DM, Hollingworth W, et al. Pharmacological and psychotherapeutic interventions for management of obsessive-compulsive disorder in adults: a systematic review and network meta-analysis. *Lancet Psychiatry*. 2016;3(8):730-739. doi:10.1016/S2215-0366(16)30069-4

25. Elliott J, Johnston A, Husereau D, et al. Pharmacologic treatment of attention deficit hyperactivity disorder in adults: a systematic review and network meta-analysis. *PLoS One*. 2020;15 (10):e0240584. doi:10.1371/journal.pone.0240584

26. Kong W, Deng H, Wan J, et al. Comparative remission rates and tolerability of drugs for generalised anxiety disorder: a systematic review and network meta-analysis of double-blind randomized controlled trials. *Front Pharmacol.* 2020;11:580858. doi:10.3389/fphar.2020.580858

27. Williams T, McCaul M, Schwarzer G, Cipriani A, Stein DJ, Ipser J. Pharmacological treatments for social anxiety disorder in adults: a systematic review and network meta-analysis. *Acta Neuropsychiatr.* 2020;32(4):169-176. doi:10.1017/ neu.2020.6

28. Chawla N, Anothaisintawee T, Charoenrungrueangchai K, et al. Drug treatment for panic disorder with or without agoraphobia: systematic review and network meta-analysis of randomised controlled trials. *BMJ*. 2022;376: e066084. doi:10.1136/bmj-2021-066084

29. Williams T, Phillips NJ, Stein DJ, Ipser JC. Pharmacotherapy for post traumatic stress disorder (PTSD). *Cochrane Database Syst Rev*. 2022;3(3): CD002795.

30. Alvarez E, Perez V, Dragheim M, Loft H, Artigas F. A double-blind, randomized, placebo-controlled, active reference study of Lu AA21004 in patients

with major depressive disorder. Int J Neuropsychopharmacol. 2012;15(5):589-600. doi:10.1017/S1461145711001027

31. Bakish D, Bose A, Gommoll C, et al. Levomilnacipran ER 40 mg and 80 mg in patients with major depressive disorder: a phase III, randomized, double-blind, fixed-dose, placebo-controlled study. *J Psychiatry Neurosci*. 2014;39(1):40-49. doi:10.1503/jpn.130040

32. Baldwin DS, Loft H, Dragheim M. A randomised, double-blind, placebo controlled, duloxetine-referenced, fixed-dose study of three dosages of Lu AA21004 in acute treatment of major depressive disorder (MDD). *Eur Neuropsychopharmacol.* 2012;22(7):482-491. doi:10.1016/j.euroneuro.2011.11.008

33. Jain R, Mahableshwarkar AR, Jacobsen PL, Chen Y, Thase ME. A randomized, double-blind, placebo-controlled 6-wk trial of the efficacy and tolerability of 5 mg vortioxetine in adults with major depressive disorder. *Int J Neuropsychopharmacol.* 2013;16(2):313-321. doi:10.1017/S1461145712000727

34. Kennedy SH, Emsley R. Placebo-controlled trial of agomelatine in the treatment of major depressive disorder. *Eur Neuropsychopharmacol.* 2006;16(2):93-100. doi:10.1016/j.euroneuro.2005. 09.002

35. Liebowitz MR, Tourian KA, Hwang E, Mele L, Study I; Study 3362 Investigators. A double-blind, randomized, placebo-controlled study assessing the efficacy and tolerability of desvenlafaxine 10 and 50 mg/day in adult outpatients with major depressive disorder. *BMC Psychiatry*. 2013;13:94. doi:10.1186/1471-244X-13-94

36. Mahableshwarkar AR, Jacobsen PL, Serenko M, Chen Y, Trivedi MH. A randomized, double-blind, placebo-controlled study of the efficacy and safety of 2 doses of vortioxetine in adults with major depressive disorder. *J Clin Psychiatry*. 2015;76(5): 583-591. doi:10.4088/JCP.14m09337

37. McIntyre RS, Lophaven S, Olsen CK. A randomized, double-blind, placebo-controlled study of vortioxetine on cognitive function in depressed adults. *Int J Neuropsychopharmacol*. 2014;17(10):1557-1567. doi:10.1017/ S1461145714000546

38. Oakes TM, Myers AL, Marangell LB, et al. Assessment of depressive symptoms and functional outcomes in patients with major depressive disorder treated with duloxetine versus placebo: primary outcomes from two trials conducted under the same protocol. *Hum Psychopharmacol.* 2012;27(1):47-56. doi:10.1002/ hup.1262

39. Olié JP, Kasper S. Efficacy of agomelatine, a MT1/MT2 receptor agonist with 5-HT2C antagonistic properties, in major depressive disorder. *Int J Neuropsychopharmacol*. 2007;10(5): 661-673.

40. Berwaerts J, Xu H, Nuamah I, Lim P, Hough D. Evaluation of the efficacy and safety of paliperidone extended-release in the treatment of acute mania: a randomized, double-blind, dose-response study. *JAffect Disord*. 2012;136(1-2):e51-e60. doi:10.1016/ j.jad.2010.06.030

41. Kushner SF, Khan A, Lane R, Olson WH. Topiramate monotherapy in the management of acute mania: results of four double-blind placebo-controlled trials. *Bipolar Disord*. 2006;8(1): 15-27. doi:10.1111/j.1399-5618.2006.00276.x

42. Landbloom RL, Mackle M, Wu X, et al. Asenapine: efficacy and safety of 5 and 10mg bid in a 3-week, randomized, double-blind, placebo-controlled trial in adults with a manic or mixed episode associated with bipolar I disorder. *J Affect Disord*. 2016;190:103-110. doi:10.1016/j.jad. 2015.06.059

43. Potkin SG, Keck PE Jr, Segal S, Ice K, English P. Ziprasidone in acute bipolar mania: a 21-day randomized, double-blind, placebo-controlled replication trial. *J Clin Psychopharmacol*. 2005;25 (4):301-310. doi:10.1097/01.jcp.0000169068. 34322.70

44. Tohen M, Vieta E, Goodwin GM, et al. Olanzapine versus divalproex versus placebo in the treatment of mild to moderate mania: a randomized, 12-week, double-blind study. *J Clin Psychiatry*. 2008;69(11):1776-1789. doi:10.4088/JCPv69n1113

45. Vieta E, Nuamah IF, Lim P, et al. A randomized, placebo- and active-controlled study of paliperidone extended release for the treatment of acute manic and mixed episodes of bipolar I disorder. *Bipolar Disord*. 2010;12(3):230-243. doi:10.1111/j.1399-5618.2010.00815.x

46. Yildiz A, Guleryuz S, Ankerst DP, Ongür D, Renshaw PF. Protein kinase C inhibition in the treatment of mania: a double-blind, placebo-controlled trial of tamoxifen. *Arch Gen Psychiatry*. 2008;65(3):255-263. doi:10.1001/ archgenpsychiatry.2007.43

47. Coppola D, Melkote R, Lannie C, et al. Efficacy and safety of paliperidone extended release 1.5 mg/day—a double-blind, placebo- and active-controlled, study in the treatment of patients with schizophrenia. *Psychopharmacol Bull*. 2011;44(2):54-72.

48. Egan MF, Zhao X, Smith A, et al. Randomized controlled study of the T-type calcium channel antagonist MK-8998 for the treatment of acute psychosis in patients with schizophrenia. *Hum Psychopharmacol.* 2013;28(2):124-133. doi:10.1002/hup.2289

49. Kane JM, Zukin S, Wang Y, et al. Efficacy and safety of cariprazine in acute exacerbation of schizophrenia: results from an international, phase III clinical trial. *J Clin Psychopharmacol*. 2015;35 (4):367-373. doi:10.1097/JCP. 0000000000346

50. Kane JM, Skuban A, Hobart M, et al. Overview of short- and long-term tolerability and safety of brexpiprazole in patients with schizophrenia. *Schizophr Res.* 2016;174(1-3):93-98. doi:10.1016/j.schres.2016.04.013

51. Litman RE, Smith MA, Desai DG, Simpson T, Sweitzer D, Kanes SJ. The selective neurokinin 3 antagonist AZD2624 does not improve symptoms or cognition in schizophrenia: a proof-of-principle study. J Clin Psychopharmacol. 2014;34(2):199-204. doi:10.1097/JCP.00000000000000071

52. Loebel A, Silva R, Goldman R, et al. Lurasidone dose escalation in early nonresponding patients with schizophrenia: a randomized, placebo-controlled study. *J Clin Psychiatry*. 2016;77 (12):1672-1680. doi:10.4088/JCP.16m10698

53. Meltzer HY, Cucchiaro J, Silva R, et al. Lurasidone in the treatment of schizophrenia: a randomized, double-blind, placebo- and olanzapine-controlled study. *Am J Psychiatry*. 2011; 168(9):957-967. doi:10.1176/appi.ajp.2011.10060907

54. Nasrallah HA, Silva R, Phillips D, et al. Lurasidone for the treatment of acutely psychotic patients with schizophrenia: a 6-week, randomized, placebo-controlled study. *J Psychiatr Res.* 2013;47 (5):670-677. doi:10.1016/j.jpsychires.2013.01.020

55. Ogasa M, Kimura T, Nakamura M, Guarino J. Lurasidone in the treatment of schizophrenia:

a 6-week, placebo-controlled study. *Psychopharmacology (Berl)*. 2013;225(3):519-530. doi:10.1007/s00213-012-2838-2

56. Potkin SG, Kimura T, Guarino J. A 6-week, double-blind, placebo- and haloperidol-controlled, phase II study of lurasidone in patients with acute schizophrenia. *Ther Adv Psychopharmacol*. 2015;5 (6):322-331. doi:10.1177/2045125315606027

57. GlaxoSmithKline. Paroxetine versus clomipramine and placebo in the treatment of obsessive-compulsive disorder. 2005; https://filehosting-v2.pharmacm.com/api/ Attachment/Download?tenantId=80217381& parentIdentifier=29060/118& attachmentIdentifier=e00bb55b-2137-4c03-8f11-65284493ba05&fileName=2168.pdf& versionIdentifier=

58. Goodman WK, Kozak MJ, Liebowitz M, White KL. Treatment of obsessive-compulsive disorder with fluvoxamine: a multicentre, double-blind, placebo-controlled trial. Int Clin Psychopharmacol. 1996;11(1):21-29. doi:10.1097/00004850-199603000-00003

59. Hollander E, Allen A, Steiner M, Wheadon DE, Oakes R, Burnham DB; Paroxetine OCD Study Group. Acute and long-term treatment and prevention of relapse of obsessive-compulsive disorder with paroxetine. J Clin Psychiatry. 2003; 64(9):1113-1121. doi:10.4088/JCPv64n0919

60. Hollander E, Koran LM, Goodman WK, et al. A double-blind, placebo-controlled study of the efficacy and safety of controlled-release fluvoxamine in patients with obsessive-compulsive disorder. *J Clin Psychiatry*. 2003;64(6):640-647. doi:10.4088/JCPv64n0604

61. Kamijima K, Murasaki M, Asai M, et al. Paroxetine in the treatment of obsessivecompulsive disorder: randomized, double-blind, placebo-controlled study in Japanese patients. *Psychiatry Clin Neurosci*. 2004;58(4):427-433. doi:10.1111/j.1440-1819.2004.01278.x

62. Kobak KA, Taylor LV, Bystritsky A, et al. St John's wort versus placebo in obsessivecompulsive disorder: results from a double-blind study. *Int Clin Psychopharmacol*. 2005;20(6):299-304. doi:10.1097/00004850-200511000-00003

63. Kronig MH, Apter J, Asnis G, et al. Placebo-controlled, multicenter study of sertraline treatment for obsessive-compulsive disorder. *J Clin Psychopharmacol*. 1999;19(2):172-176. doi:10.1097/00004714-199904000-00013

64. Montgomery SA, McIntyre A, Osterheider M, et al; The Lilly European OCD Study Group. A double-blind, placebo-controlled study of fluoxetine in patients with *DSM-III-R* obsessive-compulsive disorder. *Eur Neuropsychopharmacol.* 1993;3(2):143-152. doi:10.1016/0924-977X(93)90266-0

65. Montgomery SA, Kasper S, Stein DJ, Bang Hedegaard K, Lemming OM. Citalopram 20 mg, 40 mg and 60 mg are all effective and well tolerated compared with placebo in obsessive-compulsive disorder. *Int Clin Psychopharmacol*. 2001;16(2):75-86. doi:10.1097/00004850-200103000-00002

66. Stein DJ, Andersen EW, Tonnoir B, Fineberg N. Escitalopram in obsessive-compulsive disorder: a randomized, placebo-controlled, paroxetine-referenced, fixed-dose, 24-week study. *Curr Med Res Opin*. 2007;23(4):701-711. doi:10.1185/ 030079907X178838

67. Adler LA, Dirks B, Deas PF, et al. Lisdexamfetamine dimesylate in adults with attention-deficit/ hyperactivity disorder who report clinically significant impairment in executive function: results from a randomized, double-blind, placebo-controlled study. *J Clin Psychiatry*. 2013;74 (7):694-702. doi:10.4088/JCP.12m08144

68. Casas M, Rösler M, Sandra Kooij JJ, et al. Efficacy and safety of prolonged-release OROS methylphenidate in adults with attention deficit/hyperactivity disorder: a 13-week, randomized, double-blind, placebo-controlled, fixed-dose study. *World J Biol Psychiatry*. 2013;14 (4):268-281. doi:10.3109/15622975.2011.600333

69. Frick G, Yan B, Adler LA. Triple-bead mixed amphetamine salts (SHP465) in adults with ADHD: results of a phase 3, double-blind, randomized, forced-dose trial. *J Atten Disord*. 2020;24(3):402-413. doi:10.1177/1087054717696771

70. Goodman DW, Starr HL, Ma YW, Rostain AL, Ascher S, Armstrong RB. Randomized, 6-week, placebo-controlled study of treatment for adult attention-deficit/hyperactivity disorder: individualized dosing of osmotic-release oral system (OROS) methylphenidate with a goal of symptom remission. *J Clin Psychiatry*. 2017;78(1): 105-114. doi:10.4088/JCP.15m10348

71. Goto T, Hirata Y, Takita Y, et al. Efficacy and safety of atomoxetine hydrochloride in Asian adults with ADHD. *J Atten Disord*. 2017;21(2):100-109. doi:10.1177/1087054713510352

72. Huss M, Ginsberg Y, Tvedten T, et al. Methylphenidate hydrochloride modified-release in adults with attention deficit hyperactivity disorder: a randomized double-blind placebo-controlled trial. *Adv Ther.* 2014;31(1):44-65. doi:10.1007/s12325-013-0085-5

73. Medori R, Ramos-Quiroga JA, Casas M, et al. A randomized, placebo-controlled trial of three fixed dosages of prolonged-release OROS methylphenidate in adults with attention-deficit/ hyperactivity disorder. *Biol Psychiatry*. 2008;63 (10):981-989. doi:10.1016/j.biopsych.2007.11.008

74. Takahashi N, Koh T, Tominaga Y, Saito Y, Kashimoto Y, Matsumura T. A randomized, double-blind, placebo-controlled, parallel-group study to evaluate the efficacy and safety of osmotic-controlled release oral delivery system methylphenidate HCl in adults with attention-deficit/hyperactivity disorder in Japan. *World J Biol Psychiatry*. 2014;15(6):488-498. doi:10.3109/15622975.2013.868925

75. Weisler RH, Pandina GJ, Daly EJ, Cooper K, Gassmann-Mayer C; 31001074-ATT2001 Study Investigators. Randomized clinical study of a histamine H3 receptor antagonist for the treatment of adults with attention-deficit hyperactivity disorder. *CNS Drugs*. 2012;26(5):421-434. doi:10.2165/11631990-000000000-00000

76. Weisler RH, Greenbaum M, Arnold V, et al. Efficacy and safety of SHP465 mixed amphetamine salts in the treatment of attention-deficit/ hyperactivity disorder in adults: results of a randomized, double-blind, placebo-controlled, forced-dose clinical study. *CNS Drugs*. 2017;31(8): 685-697. doi:10.1007/s40263-017-0455-7

77. Bidzan L, Mahableshwarkar AR, Jacobsen P, Yan M, Sheehan DV. Vortioxetine (Lu AA21004) in generalized anxiety disorder: results of an 8-week, multinational, randomized, double-blind, placebo-controlled clinical trial. *Eur Neuropsychopharmacol.* 2012;22(12):847-857. doi:10.1016/j.euroneuro.2012.07.012

78. Kasper S, Gastpar M, Müller WE, et al. Lavender oil preparation Silexan is effective in generalized anxiety disorder—a randomized, double-blind comparison to placebo and paroxetine. *Int J*

Neuropsychopharmacol. 2014;17(6):859-869. doi:10.1017/S1461145714000017

79. Mahableshwarkar AR, Jacobsen PL, Chen Y, Simon JS. A randomised, double-blind, placebo-controlled, duloxetine-referenced study of the efficacy and tolerability of vortioxetine in the acute treatment of adults with generalised anxiety disorder. *Int J Clin Pract*. 2014;68(1):49-59. doi:10.1111/jicp.12328

80. Nicolini H, Bakish D, Duenas H, et al. Improvement of psychic and somatic symptoms in adult patients with generalized anxiety disorder: examination from a duloxetine, venlafaxine extended-release and placebo-controlled trial. *Psychol Med*. 2009;39(2):267-276. doi:10.1017/ S0033291708003401

81. Pollack MH, Tiller J, Xie F, Trivedi MH. Tiagabine in adult patients with generalized anxiety disorder: results from 3 randomized, double-blind, placebo-controlled, parallel-group studies. *J Clin Psychopharmacol*. 2008;28(3):308-316. doi:10.1097/ JCP.0b013e318172b45f

82. Rothschild AJ, Mahableshwarkar AR, Jacobsen P, Yan M, Sheehan DV. Vortioxetine (Lu AA21004) 5 mg in generalized anxiety disorder: results of an 8-week randomized, double-blind, placebo-controlled clinical trial in the United States. *Eur Neuropsychopharmacol.* 2012;22(12):858-866. doi:10.1016/j.euroneuro.2012.07.011

83. Stein DJ, Ahokas AA, de Bodinat C. Efficacy of agomelatine in generalized anxiety disorder: a randomized, double-blind, placebo-controlled study. *J Clin Psychopharmacol*. 2008;28(5):561-566. doi:10.1097/JCP.0b013e318184ff5b

84. Stein DJ, Ahokas A, Márquez MS, et al. Agomelatine in generalized anxiety disorder: an active comparator and placebo-controlled study. *J Clin Psychiatry*. 2014;75(4):362-368. doi:10.4088/JCPI3m08433

85. Stein DJ, Ahokas A, Jarema M, et al. Efficacy and safety of agomelatine (10 or 25 mg/day) in non-depressed out-patients with generalized anxiety disorder: a 12-week, double-blind, placebo-controlled study. *Eur Neuropsychopharmacol*. 2017;27(5):526-537. doi:10.1016/j.euroneuro.2017. 02.007

86. Allgulander C, Mangano R, Zhang J, et al; SAD 388 Study Group. Efficacy of venlafaxine ER in patients with social anxiety disorder: a double-blind, placebo-controlled, parallel-group comparison with paroxetine. *Hum Psychopharmacol.* 2004;19(6):387-396. doi:10.1002/hup.602

87. Asakura S, Hayano T, Hagino A, Koyama T. A randomized, double-blind, placebo-controlled study of escitalopram in patients with social anxiety disorder in Japan. *Curr Med Res Opin*. 2016;32(4): 749-757. doi:10.1185/03007995.2016.1146663

88. Baldwin D, Bobes J, Stein DJ, Scharwächter I, Faure M; Paroxetine Study Group. Paroxetine in social phobia/social anxiety disorder: randomised, double-blind, placebo-controlled study. *Br J Psychiatry*. 1999;175:120-126. doi:10.1192/bjp.175.2. 120

89. Davidson JR, Potts N, Richichi E, et al. Treatment of social phobia with clonazepam and placebo. *J Clin Psychopharmacol*. 1993;13(6):423-428. doi:10.1097/00004714-199312000-00008

90. Davidson J, Yaryura-Tobias J, DuPont R, et al. Fluvoxamine-controlled release formulation for the treatment of generalized social anxiety disorder. *J Clin Psychopharmacol*. 2004;24(2):118-125. doi:10.1097/01.jcp.0000106222.36344.96 **91**. Lepola U, Bergtholdt B, St Lambert J, Davy KL, Ruggiero L. Controlled-release paroxetine in the treatment of patients with social anxiety disorder. *J Clin Psychiatry*. 2004;65(2):222-229. doi:10.4088/JCPv65n0213

92. Schneier FR, Goetz D, Campeas R, Fallon B, Marshall R, Liebowitz MR. Placebo-controlled trial of moclobernide in social phobia. *Br J Psychiatry*. 1998;172:70-77. doi:10.1192/bjp.172.1.70

93. Stein MB, Liebowitz MR, Lydiard RB, Pitts CD, Bushnell W, Gergel I. Paroxetine treatment of generalized social phobia (social anxiety disorder): a randomized controlled trial. JAMA. 1998;280 (8):708-713. doi:10.1001/jama.280.8.708

94. Stein MB, Pollack MH, Bystritsky A, Kelsey JE, Mangano RM. Efficacy of low and higher dose extended-release venlafaxine in generalized social anxiety disorder: a 6-month randomized controlled trial. *Psychopharmacology (Berl)*. 2005;177(3): 280-288. doi:10.1007/s00213-004-1957-9

95. Stein MB, Ravindran LN, Simon NM, et al. Levetiracetam in generalized social anxiety disorder: a double-blind, randomized controlled trial. J Clin Psychiatry. 2010;71(5):627-631. doi:10.4088/JCP.08m04949gre

96. Asnis GM, Hameedi FA, Goddard AW, et al. Fluvoxamine in the treatment of panic disorder: a multi-center, double-blind, placebo-controlled study in outpatients. *Psychiatry Res*. 2001;103(1): 1-14. doi:10.1016/S0165-1781(01)00265-7

97. Ballenger JC, Burrows GD, DuPont RL Jr, et al. Alprazolam in panic disorder and agoraphobia: results from a multicenter trial—I: efficacy in short-term treatment. *Arch Gen Psychiatry*. 1988; 45(5):413-422. doi:10.1001/archpsyc.1988. 01800290027004

98. Ballenger JC, Wheadon DE, Steiner M, Bushnell W, Gergel IP. Double-blind, fixed-dose, placebo-controlled study of paroxetine in the treatment of panic disorder. *Am J Psychiatry*. 1998; 155(1):36-42. doi:10.1176/ajp.155.1.36

99. Caillard V, Rouillon F, Viel JF, Markabi S; French University Antidepressant Group. Comparative effects of low and high doses of clomipramine and placebo in panic disorder: a double-blind controlled study. *Acta Psychiatr Scand.* 1999;99(1):51-58. doi:10.111/j.1600-0447.1999.tb05384.x

100. Liebowitz MR, Asnis G, Mangano R, Tzanis E. A double-blind, placebo-controlled, parallel-group, flexible-dose study of venlafaxine extended release capsules in adult outpatients with panic disorder. *J Clin Psychiatry*. 2009;70(4):550-561. doi:10.4088/JCP.08m04238

101. Michelson D, Lydiard RB, Pollack MH, et al; The Fluoxetine Panic Disorder Study Group. Outcome assessment and clinical improvement in panic disorder: evidence from a randomized controlled trial of fluoxetine and placebo. *Am J Psychiatry*. 1998;155(11):1570-1577. doi:10.1176/ajp.155.11.1570

102. Noyes R Jr, Burrows GD, Reich JH, et al. Diazepam versus alprazolam for the treatment of panic disorder. J Clin Psychiatry. 1996;57(8):349-355.

103. Pohl RB, Wolkow RM, Clary CM. Sertraline in the treatment of panic disorder: a double-blind multicenter trial. *Am J Psychiatry*. 1998;155(9):1189-1195. doi:10.1176/ajp.155.9.1189

104. Pollack MH, Otto MW, Worthington JJ, Manfro GG, Wolkow R. Sertraline in the treatment of panic disorder: a flexible-dose multicenter trial. *Arch Gen Psychiatry*. 1998;55(11):1010-1016. doi:10.1001/archpsyc.55.11.1010 **105**. Sheehan DV, Burnham DB, Iyengar MK, Perera P; Paxil CR Panic Disorder Study Group. Efficacy and tolerability of controlled-release paroxetine in the treatment of panic disorder. *J Clin Psychiatry*. 2005; 66(1):34-40. doi:10.4088/JCP.v66n0105

106. Connor KM, Sutherland SM, Tupler LA, Malik ML, Davidson JR. Fluoxetine in post-traumatic stress disorder: randomised, double-blind study. *Br J Psychiatry*. 1999;175:17-22. doi:10.1192/bjp.175.1.7

107. Davidson J, Baldwin D, Stein DJ, et al. Treatment of posttraumatic stress disorder with venlafaxine extended release: a 6-month randomized controlled trial. *Arch Gen Psychiatry*. 2006;63(10):1158-1165. doi:10.1001/archpsyc.63.10. 1158

108. Davis LL, Davidson JR, Ward LC, Bartolucci A, Bowden CL, Petty F. Divalproex in the treatment of posttraumatic stress disorder: a randomized, double-blind, placebo-controlled trial in a veteran population. J Clin Psychopharmacol. 2008;28(1): 84-88. doi:10.1097/JCP.0b013e318160f83b

109. Davis L. Nepicastat for posttraumatic stress disorder (PTSD) in OIF/OEF veterans (Nepicastat). Accessed February 21, 2024. https://clinicaltrials.gov/study/NCT00659230?tab=results

110. Davis LL, Pilkinton P, Lin C, Parker P, Estes S, Bartolucci A. A randomized, placebo-controlled trial of mirtazapine for the treatment of posttraumatic stress disorder in veterans. *J Clin Psychiatry*. 2020; 81(6):20m13267. doi:10.4088/JCP.20m13267

111. Friedman MJ, Marmar CR, Baker DG, Sikes CR, Farfel GM. Randomized, double-blind comparison of sertraline and placebo for posttraumatic stress disorder in a Department of Veterans Affairs setting. J Clin Psychiatry. 2007;68(5):711-720. doi:10.4088/JCP.v68n0508

112. Li W, Ma YB, Yang Q, Li BL, Meng QG, Zhang Y. Effect and safety of sertraline for treat posttraumatic stress disorder: a multicenter randomised controlled study. *Int J Psychiatry Clin Pract*. 2017;21(2):151-155. doi:10.1080/13651501.2017. 1291838

113. Raskind MA, Peskind ER, Chow B, et al. Trial of prazosin for post-traumatic stress disorder in military veterans. *N Engl J Med*. 2018;378(6):507-517. doi:10.1056/NEJMoa1507598

114. Rasmusson AM, Marx CE, Jain S, et al. A randomized controlled trial of ganaxolone in posttraumatic stress disorder. *Psychopharmacology* (*Berl*). 2017;234(15):2245-2257. doi:10.1007/ s00213-017-4649-y

115. Villarreal G, Hamner MB, Cañive JM, et al. Efficacy of quetiapine monotherapy in posttraumatic stress disorder: a randomized, placebo-controlled trial. *Am J Psychiatry*. 2016;173 (12):1205-1212. doi:10.1176/appi.ajp.2016.15070967

116. Higgins JP, Altman DG, Gøtzsche PC, et al; Cochrane Bias Methods Group; Cochrane Statistical Methods Group. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ*. 2011;343:d5928. doi:10.1136/bmj.d5928

117. Sterne JAC, Savović J, Page MJ, et al. ROB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ*. 2019;366:I4898. doi:10.1136/bmj.I4898

118. Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for *t*-tests and ANOVAs. *Front Psychol*. 2013; 4:863. doi:10.3389/fpsyg.2013.00863

119. Cumming G. Understanding the New Statistics: Effect Sizes, Confidence Intervals, and Meta-Analysis. Routledge; 2012:290-294.

120. MOTE. Magnitude of effect size calculator, version 2. Accessed April 25, 2024. https://doomlab.shinyapps.io/mote/

121. Higgins J, Thomas J, Chandler J, et al, eds. *Cochrane Handbook for Systematic Reviews of Interventions*. 2nd ed. John Wiley & Sons; 2019. doi:10.1002/9781119536604

122. Kirsch I, Sapirstein G. Listening to Prozac but hearing placebo: a meta-analysis of antidepressant medication. *Prev Treat*. 1998;1(2):article 2a. doi:10.1037/1522-3736.1.12a

123. Lynch CJ, Gunning FM, Liston C. Causes and consequences of diagnostic heterogeneity in depression: paths to discovering novel biological depression subtypes. *Biol Psychiatry*. 2020;88(1): 83-94. doi:10.1016/j.biopsych.2020.01.012

124. Jääskeläinen E, Juola P, Hirvonen N, et al. A systematic review and meta-analysis of recovery in schizophrenia. *Schizophr Bull*. 2013;39(6):1296-1306. doi:10.1093/schbul/sbs130

125. Schwarzer G, Rücker G. Meta-analysis of proportions. *Methods Mol Biol*. 2022;2345:159-172. doi:10.1007/978-1-0716-1566-9_10

126. Sinyor M, Levitt AJ, Cheung AH, et al. Does inclusion of a placebo arm influence response to active antidepressant treatment in randomized controlled trials: results from pooled and meta-analyses. *J Clin Psychiatry*. 2010;71(3):270-279. doi:10.4088/JCP.08r04516blu

127. Goldstein JM. Gender differences in the course of schizophrenia. *Am J Psychiatry*. 1988;145(6): 684-689. doi:10.1176/ajp.145.6.684

128. Usall J, Ochoa S, Araya S, Márquez M; NEDES Group (Assessment Research Group in Schizophrenia). Gender differences and outcome in schizophrenia: a 2-year follow-up study in a large community sample. *Eur Psychiatry*. 2003;18(6): 282-284. doi:10.1016/j.eurpsy.2003.06.001

129. Tsutsumi Y, Tsujimoto Y, Tajika A, et al. Proportion attributable to contextual effects in general medicine: a meta-epidemiological study based on Cochrane reviews. *BMJ Evid Based Med*. 2023;28(1):40-47. doi:10.1136/bmjebm-2021-111861

130. Furukawa TA, Noma H, Caldwell DM, et al. Waiting list may be a nocebo condition in psychotherapy trials: a contribution from network meta-analysis. *Acta Psychiatr Scand*. 2014;130(3): 181-192. doi:10.1111/acps.12275

131. Baethge C, Assall OP, Baldessarini RJ. Systematic review of blinding assessment in randomized controlled trials in schizophrenia and affective disorders 2000-2010. *Psychother Psychosom*. 2013;82(3):152-160. doi:10.1159/ 000346144

132. Goodkind M, Eickhoff SB, Oathes DJ, et al. Identification of a common neurobiological substrate for mental illness. *JAMA Psychiatry*. 2015; 72(4):305-315. doi:10.1001/jamapsychiatry.2014. 2206

133. Schmitt A, Falkai P, Papiol S. Neurodevelopmental disturbances in schizophrenia: evidence from genetic and environmental factors. *J Neural Transm (Vienna)*. 2023;130(3):195-205. doi:10.1007/s00702-022-02567-5